早教吧 育儿知识 作业答案 考试题库 百科 知识分享

一道简单的极大无关组的题,请帮我一下.设a1,a2,.an是一组n维向量,已知单位向量e1,e2,.en可以被它线性表出,证明;a1,a2,a3.an线性无关.

题目详情
一道简单的极大无关组的题,请帮我一下.
设a1,a2,.an是一组n维向量,已知单位向量e1,e2,.en可以被它线性表出,证明;a1,a2,a3.an线性无关.
▼优质解答
答案和解析
证明:
根据定理:若向量组(I)能由向量组(II)线性表示,则向量组(I)的秩不大于向量组(II)的秩.
∵单位向量组(I)e1,e2,...,en可由n维向量组(II)a1,a2,...,an线性表出,
∴向量组(I)的秩不大于向量组(II)的秩,
即 r(e1,e2,...,en)≤r(a1,a2,...,an)
且两向量组都为n维向量组,
∴r(e1,e2,...,en)≤r(a1,a2,...,an)≤n
又∵向量组(I)e1,e2,...,en为单位向量,
∴向量组(I)的秩为n,
即r(e1,e2,...,en)=n
综上,可得 n≤r(a1,a2,...,an)≤n
所以,r(a1,a2,...,an)=n
即 n维向量组a1,a2,...,an的秩为n,所以其最大线性无关组就是向量组本身
∴n维向量组a1,a2,.an线性无关.