早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(2013•大兴区二模)已知:如图,在Rt△ABC中,∠BAC=90°,AC=2AB,点D是AC的中点,以AD为斜边在△ABC外作等腰直角三角形AED,连结BE、EC.试猜想线段BE和EC的数量关系及位置关系,并证明你的

题目详情
(2013•大兴区二模)已知:如图,在Rt△ABC中,∠BAC=90°,AC=2AB,点D是AC的中点,以AD为斜边在△ABC外作等腰直角三角形AED,连结BE、EC.试猜想线段BE和EC的数量关系及位置关系,并证明你的猜想.
▼优质解答
答案和解析
BE=EC,BE⊥EC.
证明:∵AC=2AB,点D是AC的中点,
∴AB=AD=CD,
∵∠EAD=∠EDA=45°,
∴∠EAB=∠EDC=135°,
∵在△EAB和△EDC中,
AE=ED
∠EAB=∠EDC
AB=DC

∴△EAB≌△EDC(SAS),
∴∠AEB=∠DEC,EB=EC,
∴∠BEC=∠AED=90°,
∴BE=EC,BE⊥EC.