早教吧作业答案频道 -->数学-->
lim(x->3+)[cosx.ln(x-3)]/ln(e^x-e^3)=?
题目详情
lim(x->3+)[cosx.ln(x-3)]/ln(e^x-e^3)=?
▼优质解答
答案和解析
lim(x->3+)[cosx.ln(x-3)]/ln(e^x-e^3)
=cos3 * lim(x->3+) ln(x-3) /ln(e^x-e^3) 分子分母都趋于0,使用洛必达法则求导
=cos3 *lim(x->3+) [1/(x-3)] / [e^x/(e^x-e^3)]
=cos3 /e^3 * lim(x->3+) (e^x-e^3)/(x-3) 分子分母都趋于0,使用洛必达法则求导
=cos3 /e^3 * lim(x->3+) e^x /1
=cos3 /e^3 *e^3
=cos3
所以求得极限值为cos3
=cos3 * lim(x->3+) ln(x-3) /ln(e^x-e^3) 分子分母都趋于0,使用洛必达法则求导
=cos3 *lim(x->3+) [1/(x-3)] / [e^x/(e^x-e^3)]
=cos3 /e^3 * lim(x->3+) (e^x-e^3)/(x-3) 分子分母都趋于0,使用洛必达法则求导
=cos3 /e^3 * lim(x->3+) e^x /1
=cos3 /e^3 *e^3
=cos3
所以求得极限值为cos3
看了 lim(x->3+)[cos...的网友还看了以下: