早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如果等式(3x-2)^5=a0x^5+a1x^4+a2x^3+a3x^2+a4x+a5=v=如果等式(3x-2)^5=a0x^5+a1x^4+a2x^3+a3x^2+a4x+a5,对于任意地实数x都成立,则a1+a3+a5=

题目详情
如果等式(3x-2)^5=a0x^5+a1x^4+a2x^3+a3x^2+a4x+a5
= v=
如果等式(3x-2)^5=a0x^5+a1x^4+a2x^3+a3x^2+a4x+a5,对于任意地实数x都成立,则a1+a3+a5=
▼优质解答
答案和解析
因为对于任意的实数x都成立
所以不妨设x=1、-1
当x=1时,a0+a1+a2+a3+a4+a5=1
当x=-1时,-a0+a1-a2+a3-a4+a5=-3125
两式相加得2(a1+a3+a5)=-3124
所以a1+a3+a5=-1562