早教吧 育儿知识 作业答案 考试题库 百科 知识分享

设n∈N*,数列{an}的前n项和为Sn,已知Sn+1=Sn+an+2,且a1,a2,a5成等比数列.(I)求数列{an}的通项公式;(II)若数列{bn}满足bnan=(2)1+an,求数列{bn}的前n项和Tn.

题目详情
设n∈N*,数列{an}的前n项和为Sn,已知Sn+1=Sn+an+2,且a1,a2,a5成等比数列.
(I)求数列{an}的通项公式;
(II)若数列{bn}满足
bn
an
=(
2
 1+an,求数列{bn}的前n项和Tn
▼优质解答
答案和解析
(I)∵Sn+1=Sn+an+2,
∴an+1-an=2,
∴数列{an}是公差为2的等差数列,
∵a1,a2,a5成等比数列,
a
2
2
=a1•a5
(a1+2)2=a1(a1+8),解得a1=1.
∴an=1+2(n-1)=2n-1.
(II)∵数列{bn}满足
bn
an
=(
2
 1+an,
∴bn=(2n-1)(
2
)2n=(2n-1)2n
∴数列{bn}的前n项和Tn=2+3×22+5×23+…+(2n-1)2n
∴2Tn=22+3×23+…+(2n-3)×2n+(2n-1)×2n+1
∴-Tn=2+2(22+23+…+2n)-(2n-1)×2n+1=2+2×
4(2n-1-1)
2-1
-(2n-1)×2n+1=-6+(3-2n)×2n+1
∴Tn=6+(2n-3)×2n+1