早教吧作业答案频道 -->数学-->
已知数列{an}满足a0=1/2,an=an-1+(1/n^2)an-1^2,求证:(n+1)/(n+2)
题目详情
已知数列{an}满足a0=1/2,an=an-1+(1/n^2)an-1^2,求证:(n+1)/(n+2)
▼优质解答
答案和解析
a(1) = a(0) + [a(0)]^2 = 3/4 < 1,
2/3 = 8/12 < 9/12 = 3/4 = a(1),
2/3 < a(1) < 1.
n=1时,2/3 < a(1) < 1,命题成立.
设n=k时,有 (k+1)/(k+2) < a(k) < k成立,
则,n=k+1时,a(k+1) = a(k) + [a(k)]^2/(k+1)^2 < k + k^2/(k+1)^2 < k + 1,
a(k+1) = a(k) + [a(k)]^2/(k+1)^2 > (k+1)/(k+2) + 1/(k+2)^2
(k+1)/(k+2) + 1/(k+2)^2 - (k+2)/(k+3) = [(k+2)^2-1 - (k+2)^2]/[(k+2)(k+3)] + 1/(k+2)^2
= 1/(k+2)^2 - 1/[(k+2)(k+3)]
= 1/(k+2)[1/(k+2) - 1/(k+3)]
> 0.
所以,a(k+1) > (k+1)/(k+2) + 1/(k+2)^2 > (k+2)/(k+3).
综合,有,
(k+2)/(k+3) < a(k+1) < k+1.
n=k+1时,命题成立.
由归纳法知,n>=1时,总有
(n+1)/(n+2) < a(n) < n
成立.
2/3 = 8/12 < 9/12 = 3/4 = a(1),
2/3 < a(1) < 1.
n=1时,2/3 < a(1) < 1,命题成立.
设n=k时,有 (k+1)/(k+2) < a(k) < k成立,
则,n=k+1时,a(k+1) = a(k) + [a(k)]^2/(k+1)^2 < k + k^2/(k+1)^2 < k + 1,
a(k+1) = a(k) + [a(k)]^2/(k+1)^2 > (k+1)/(k+2) + 1/(k+2)^2
(k+1)/(k+2) + 1/(k+2)^2 - (k+2)/(k+3) = [(k+2)^2-1 - (k+2)^2]/[(k+2)(k+3)] + 1/(k+2)^2
= 1/(k+2)^2 - 1/[(k+2)(k+3)]
= 1/(k+2)[1/(k+2) - 1/(k+3)]
> 0.
所以,a(k+1) > (k+1)/(k+2) + 1/(k+2)^2 > (k+2)/(k+3).
综合,有,
(k+2)/(k+3) < a(k+1) < k+1.
n=k+1时,命题成立.
由归纳法知,n>=1时,总有
(n+1)/(n+2) < a(n) < n
成立.
看了 已知数列{an}满足a0=1...的网友还看了以下:
已知数列a(n)为等比数列,a(4)=16,q=2,数列b(n)前N项和s(n)=1/2*n的平方 2020-05-13 …
已知函数f(x)=x/(2*x+1),数列{an}满足a[1]=1/2,a[n+1]=f(a[n] 2020-05-13 …
在数列{a(n)},{b(n)}中,a(1)=2,b(1)=4,且a(n),b(n),a(n+1) 2020-05-22 …
已知数列{an}满足a1=1/4,a2=3/4,a(n+1)=2an-a(n-1)(n>等于2,n 2020-06-27 …
已知数列{an}满足a1=1/4,a2=3/4,a(n+1)=2an-a(n-1)(n>等于2,n 2020-06-27 …
1.已知数列{a(n)}满足a(n)a(n+1)a(n+2)a(n+3)=24,且a1=1a2=2 2020-07-09 …
高中数列题(说明:"[]"中内容表示下标)以数列{a[n]}的任意相邻两项为坐标的点P[n](a[ 2020-07-29 …
若无穷数列{an}满足:①对任意n属于正整数,{a(n)+a(n+2)}/2≤a(n+1);②存在 2020-08-02 …
已知数列{a底n}中,a1=a2=1,且an=an-1+an-2(n≥3,n∈n*),设bn=an/ 2020-11-27 …
高二数学问题2已知数列{a[n]}中,a1=1,a2=r(r大于0)且数列{a[n]*a[n+1]} 2020-11-29 …