早教吧作业答案频道 -->数学-->
2n次方=b1/1+b2/3+b3/5+…+bn/2n次方-1,求数列bn的前n项和Tn
题目详情
2n次方=b1/1+b2/3+b3/5+…+bn/2n次方-1,求数列bn的前n项和Tn
▼优质解答
答案和解析
2n^2=b1/1+b2/3+b3/5+…+bn/(2n-1) (1)
n=1,b1=2
2(n-1)^2=b1/1+b2/3+b3/5+…+b(n-1)/(2n-3) (2)
(1)-(2)
bn/(2n-1) = 2(2n-1)
bn = 2(2n-1)^2
Tn =b1+b2+...+bn
consider
n^2 = n(n+1) -n
=(1/3)[n(n+1)(n+2)-(n-1)n(n+1)] -(1/2)[ n(n+1) -(n-1)n]
1^2+2^2+...+n^2
=(1/3)n(n+1)(n+2)-(1/2)n(n+1)
=(1/6)n(n+1)(2n+1)
bn = 2(2n-1)^2
Tn =b1+b2+...+bn
=2 .(1/6)(2n-1)[(2n-1)+1][2(2n-1)+1]
=(1/3)(2n-1)(2n)(4n-1)
=(2/3)n(2n-1)(4n-1)
n=1,b1=2
2(n-1)^2=b1/1+b2/3+b3/5+…+b(n-1)/(2n-3) (2)
(1)-(2)
bn/(2n-1) = 2(2n-1)
bn = 2(2n-1)^2
Tn =b1+b2+...+bn
consider
n^2 = n(n+1) -n
=(1/3)[n(n+1)(n+2)-(n-1)n(n+1)] -(1/2)[ n(n+1) -(n-1)n]
1^2+2^2+...+n^2
=(1/3)n(n+1)(n+2)-(1/2)n(n+1)
=(1/6)n(n+1)(2n+1)
bn = 2(2n-1)^2
Tn =b1+b2+...+bn
=2 .(1/6)(2n-1)[(2n-1)+1][2(2n-1)+1]
=(1/3)(2n-1)(2n)(4n-1)
=(2/3)n(2n-1)(4n-1)
看了 2n次方=b1/1+b2/3...的网友还看了以下:
(1)已知x>-1,n∈N*,求证:(1+x)n≥1+nx(2)已知m>0,n∈N*,ex≥m+n 2020-05-17 …
已知数列{an}中,a1=2,an+1(n+1是a的下标)=(√2-1)(an+2),n∈N*,求 2020-06-03 …
数列{an}与{bn}满足关系:a1=2,a(n+1)=(an^2+1)/2an,bn=(an+1 2020-07-22 …
哪位大神来设数列{an}的前n项和为Sn,n∈N*,已知a1=1,a2=3/2,a3=5/4,且当 2020-07-23 …
已知数列{an}得通项公式an=1/n+1+1/n+2+1/n+3+...+1/2n(n∈n*). 2020-07-26 …
设函数f(x,y)=(1+m/y)^x,m>0,Y>0设n是正整数,t是正实数,t满足f(n,1)= 2020-11-01 …
已知数列{a底n}中,a1=a2=1,且an=an-1+an-2(n≥3,n∈n*),设bn=an/ 2020-11-27 …
有一种商品在最近30天内的价格f(t)与天数t的函数关系f(t)=t+20,(0<t<25,t∈N) 2021-01-11 …
已知f(x)=(x+m)2n+1与g(x)=(mx+1)2n(n∈N*,m≠0).(Ⅰ)若n=3,f 2021-01-11 …
已知数列{a(n)}的前n项和为S(n),且满足a(1)=1,a(n+1)=S(n)+1(n∈N(+ 2021-02-09 …