早教吧作业答案频道 -->数学-->
如图,点P(2,2),点A、B分别在x轴正半轴和y轴负半轴上,A(5,0),∠APB=90°.(1)求点B的坐标;(2)如图2,点C在y轴正半轴上,作PD⊥PC,且PD=PC,过点P作x轴的平行线交y轴于E,交AD于F
题目详情
如图,点P(2,2),点A、B分别在x轴正半轴和y轴负半轴上,A(5,0),∠APB=90°.
(1)求点B的坐标;
(2)如图2,点C在y轴正半轴上,作PD⊥PC,且PD=PC,过点P作x轴的平行线交y轴于E,交AD于F,若C(0,m),求PF的长(用m表示).
(1)求点B的坐标;
(2)如图2,点C在y轴正半轴上,作PD⊥PC,且PD=PC,过点P作x轴的平行线交y轴于E,交AD于F,若C(0,m),求PF的长(用m表示).
▼优质解答
答案和解析
(1)如图1,过P分别作PM⊥OA,PN⊥OB,垂足分别为M、N,
∵P(2,2),A(5,0),
∴PM=PN=ON=OM=2,OA=5,
∴AM=5-2=3,
∵∠APB=90°,
∴∠NPB+∠BPM=∠APM+∠BPM,
∴∠NPB=∠APM,
在△PMA和△PNB中
∴△PMA≌△PNB(ASA),
∴BN=AM=3,且ON=2,
∴OB=1,
∴点B坐标为(0,-1);
(2)如图2,在CE上取点H,使∠PHC=∠PFD,
∵PD⊥PC,EF∥AB,
∴∠CPD=∠CEP=90°,
∴∠HCP+∠CPE=∠CPE+∠DPF=90°,
∴∠PCH=∠DPF,
在△PCH和△DPF中
∴△PCH≌△DPF(AAS),
∴PF=CH,
∵∠PHC=∠DFP,
∴∠PHB=∠PFA,
∵EF∥AB,
∴∠FPA=∠PAO,
又由(1)可知∠EBP=∠PAO,
∴∠HBP=∠FPA,
且由(1)可知PB=PA,
在△PHB和△FAP中
∴△PHB≌△FAP(AAS),
∴PF=BH,
∴PF=
BC,
且BC=BO+OC=1+m,
∴PF=
.
(1)如图1,过P分别作PM⊥OA,PN⊥OB,垂足分别为M、N,
∵P(2,2),A(5,0),
∴PM=PN=ON=OM=2,OA=5,
∴AM=5-2=3,
∵∠APB=90°,
∴∠NPB+∠BPM=∠APM+∠BPM,
∴∠NPB=∠APM,
在△PMA和△PNB中
|
∴△PMA≌△PNB(ASA),
∴BN=AM=3,且ON=2,
∴OB=1,
∴点B坐标为(0,-1);
(2)如图2,在CE上取点H,使∠PHC=∠PFD,
∵PD⊥PC,EF∥AB,
∴∠CPD=∠CEP=90°,
∴∠HCP+∠CPE=∠CPE+∠DPF=90°,
∴∠PCH=∠DPF,
在△PCH和△DPF中
|
∴△PCH≌△DPF(AAS),
∴PF=CH,
∵∠PHC=∠DFP,
∴∠PHB=∠PFA,
∵EF∥AB,
∴∠FPA=∠PAO,
又由(1)可知∠EBP=∠PAO,
∴∠HBP=∠FPA,
且由(1)可知PB=PA,
在△PHB和△FAP中
|
∴△PHB≌△FAP(AAS),
∴PF=BH,
∴PF=
1 |
2 |
且BC=BO+OC=1+m,
∴PF=
1+m |
2 |
看了 如图,点P(2,2),点A、...的网友还看了以下:
如何确定偏导数极值?例如:已知a,b,c是满足a^2=b^2+c^2的正数,求函数f(a,b,c) 2020-04-26 …
(1)已知abc属于正实数,求证(a^2+a+1)(b^2+b+1)(c^2+c+1)>=27ab 2020-04-27 …
1.已知a,b,c是正有理数.求证:a^3/(a^2+ab+b^2)+b^3/(b^2+bc+c^ 2020-06-12 …
某数加上168得到一个正整数的平方,加上100也能得到一个正整数的平方,这个数是多少?(注:我不要 2020-06-22 …
(1)圆柱的体积比和它等底等高的圆锥的体积大.()A.3倍B.2倍C.1/3D.2/3(2)只有三 2020-06-28 …
低于正常水位2米记作一2米,那么高于正常水位1米记作………….A+2米,B一2米,C+1米,D+3 2020-07-12 …
条件等式求值~帮忙做一下...1.已知a+b+c=1,a^2+b^2+c^2=2,a^3+b^3+ 2020-07-24 …
过正弦曲线y=sinx上点M(π/2,1)处作一抛物线y=ax^2+bx+c,使抛物线与正弦曲线在 2020-07-31 …
过正弦曲线y=sinx上点M(π/2,1)处作一抛物线y=ax^2+bx+c,使抛物线与正弦曲线在 2020-07-31 …
过正弦曲线y=sinx上点M(π/2,1)处作一抛物线y=ax^2+bx+c,使抛物线与正弦曲线在 2020-07-31 …