早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,P为正方形ABCD内一点,且BP=2,PC=3,∠APB=135°,将△APB绕点B顺时针旋转90°得到△CP′B,连接PP′,则AP=.

题目详情
如图,P为正方形ABCD内一点,且BP=2,PC=3,∠APB=135°,将△APB绕点B顺时针旋转90°得到△CP′B,连接PP′,则AP=___.
作业搜
▼优质解答
答案和解析
∵△BP'C是由△BPA旋转得到,
∴∠APB=∠CP'B=135°,∠ABP=∠CBP',BP=BP',AP=CP',
∵∠ABP+∠PBC=90°,
∴∠CBP'+∠PBC=90°,即∠PBP'=90°,作业搜
∴△BPP'是等腰直角三角形,
∴∠BP'P=45°,
∵∠APB=∠CP'B=135°,
∴∠PP'C=90°,
∵BP=2,
∴PP′=
BP2+BP′2
=2
2

∵PC=3,
∴CP'=
PC2-PP′2
=
9-8
=1,
∴AP=CP′=1,
故答案为:1.