早教吧作业答案频道 -->数学-->
过圆x2+y2=r2外一点P(x0,y0)两条切线,切点分别为A、B,求证:切点弦AB所在的直线方程为x0x+y0y=r2过圆x2+y2=r2外一点P(x0,y0)引圆的两条切线,切点分别为A、B,求证:切点弦AB所在的直线方程为
题目详情
过圆x2+y2=r2外一点P(x0,y0)两条切线,切点分别为A、B,求证:切点弦AB所在的直线方程为 x0x+y0y=r2
过圆x2+y2=r2外一点P(x0,y0)引圆的
两条切线,切点分别为A、B,
求证:切点弦AB所在的直线方程为
x0x+y0y=r2
过圆x2+y2=r2外一点P(x0,y0)引圆的
两条切线,切点分别为A、B,
求证:切点弦AB所在的直线方程为
x0x+y0y=r2
▼优质解答
答案和解析
这个方程是 x0*x+y0*y=r^2 .
证明:设 A(a1,b1),则过 A 的切线方程为 a1*x+b1*y=r^2 ,
由于切线过 P ,因此 a1*x0+b1*y0=r^2 ,
同理,设 B(a2,b2),则过 B 的切线方程为 a2*x+b2*y=4^2 ,
由于切线过 P ,因此 a2*x0+b2*y0=r^2 ,
从以上两式可以看出,A、B 的坐标均满足一次方程 x0*x+y0*y=r^2 ,而它就表示直线,
因此它就是过 A、B 的直线方程 .
(这里用到一个结论:过圆 x^2+y^2=r^2 上一点(a,b)的切线方程为 ax+by=r^2 )
方法2:
连接圆心O和P,则以OP为直径的圆的方程是x(x-xo)+y(y-yo)=0
即x^2+y^2-x*xo-y*yo=0
点A,B在此圆上,又A,B在圆x^2+y^2=r^2,所以AB的直线方程就是二个圆的方程相减所得:
即:xox+yoy=r^2
保准正确,采纳吧(*^__^*) 嘻嘻……
证明:设 A(a1,b1),则过 A 的切线方程为 a1*x+b1*y=r^2 ,
由于切线过 P ,因此 a1*x0+b1*y0=r^2 ,
同理,设 B(a2,b2),则过 B 的切线方程为 a2*x+b2*y=4^2 ,
由于切线过 P ,因此 a2*x0+b2*y0=r^2 ,
从以上两式可以看出,A、B 的坐标均满足一次方程 x0*x+y0*y=r^2 ,而它就表示直线,
因此它就是过 A、B 的直线方程 .
(这里用到一个结论:过圆 x^2+y^2=r^2 上一点(a,b)的切线方程为 ax+by=r^2 )
方法2:
连接圆心O和P,则以OP为直径的圆的方程是x(x-xo)+y(y-yo)=0
即x^2+y^2-x*xo-y*yo=0
点A,B在此圆上,又A,B在圆x^2+y^2=r^2,所以AB的直线方程就是二个圆的方程相减所得:
即:xox+yoy=r^2
保准正确,采纳吧(*^__^*) 嘻嘻……
看了 过圆x2+y2=r2外一点P...的网友还看了以下:
高中关于电场的问题如图所示,均匀带电圆环所带电荷量为Q,半径为R,圆心为O,P为垂直于圆环平面的对称 2020-03-30 …
1均匀带电半球壳半径为R,电荷面密度为k,则将球壳分割为一系列圆环,其中半径为r圆环带电q=k*2 2020-04-12 …
在平面直角坐标系xOy中,C的半径为r,P是与圆心C不重合的点,点P关于C的反称点的定义如下:若在 2020-07-08 …
(2014•海淀区二模)对于半径为r的⊙P及一个正方形给出如下定义:若⊙P上存在到此正方形四条边距 2020-07-11 …
有一个在水平面内以角速度ω旋转的圆台,半径为R,圆台边缘P点处坐着一个人,此人举枪想打中圆心处的目 2020-07-31 …
过圆心做xy轴,在圆心O(x0,y0)做两同心圆A,B,圆A半径为r,圆B半径为R,R>r,未知点 2020-08-01 …
设某商品的收益函数为R(p),收益弹性1+p3,其中p为价格,且R(1)=1,则R(p)=P•ep3 2020-11-02 …
(2004•淄博)已知⊙O的半径为R,⊙P的半径为r(r<R),且⊙P的圆心P在⊙O上.设C是⊙P上 2020-11-13 …
已知圆O半径为R,点P是圆O外一点,且OP=d,过点P任意作割线PAB,求证:PA乘PB=d^2-R 2020-12-05 …
圆o半径为r,圆心到直线l距离为d,r与d的位置关系.速速来圆o半径为r,圆心到直线l距离为d,r与 2020-12-09 …