早教吧作业答案频道 -->其他-->
设函数f(x)在[0,+∞)上连续、单调不减且f(0)≥0.试证函数F(x)=1x∫x0tnf(t)dt,若x>00,若x=0,在[0,+∞)上连续且单调不减(其中n>0).
题目详情
设函数f(x)在[0,+∞)上连续、单调不减且f(0)≥0.试证函数F(x)=
,在[0,+∞)上连续且单调不减(其中n>0).
|
▼优质解答
答案和解析
证明:显然当x>0时,F(x)连续,又
F(x)=
=
xnf(x)(洛必达法则)
=F(0)
所以:函数F(x)在[0,+∞]上连续.
当x∈[0,+∞]时:
F'(x)=(
)'
=
又因为,由微分中值定理有:
tnf(t)dt=ζnf(ζ)x ζ∈(0,x)
因此:F'(x)=
=
=
=
=
因为:ζ∈(0,x),所以:xn-ζn>0;
又:f(x)单调不减,且f(x)≥f(ζ)≥f(0)≥0
因此:f(x)-f(ζ)≥0;
所以有:当x∈[0,+∞]时,
F'(x)=
≥0
因此,F(x)在x∈[0,+∞]上单调不减.
命题得证.
lim |
x→0+ |
lim |
x→0+ |
| ||
x |
=
lim |
x→0+ |
=F(0)
所以:函数F(x)在[0,+∞]上连续.
当x∈[0,+∞]时:
F'(x)=(
| ||
x |
=
xn+1f(x)−
| ||
x2 |
又因为,由微分中值定理有:
∫ | x 0 |
因此:F'(x)=
xn+1f(x)−
| ||
x2 |
=
xn+1f(x)−ζnf(ζ)x |
x2 |
=
xnf(x)−ζnf(ζ) |
x |
=
xnf(x)−xnf(ζ)+xnf(ζ)−ζnf(ζ) |
x |
=
xn[f(x)−f(ζ)]+f(ζ)(xn−ζn) |
x |
因为:ζ∈(0,x),所以:xn-ζn>0;
又:f(x)单调不减,且f(x)≥f(ζ)≥f(0)≥0
因此:f(x)-f(ζ)≥0;
所以有:当x∈[0,+∞]时,
F'(x)=
xn[f(x)−f(ζ)]+f(ζ)(xn−ζn) |
x |
因此,F(x)在x∈[0,+∞]上单调不减.
命题得证.
看了 设函数f(x)在[0,+∞)...的网友还看了以下:
可以参考的公式是:s[1]=a[1];s[n]=s[n-1]>=0?s[n-1]+a[n]:a[n 2020-05-14 …
指数增加计算怎么算5000=n+n*0.97+n*0.97*0.97+n*0.97*0.97*0. 2020-06-12 …
Catalan数公式推导请教如何把下列递归公式f(n)=f(0)*f(n-1-0)+f(1)*(n 2020-06-28 …
阅读材料:若m2-2mn+2n2-8n+16=0,求m、n的值.解:∵m2-2mn+2n2-8n+ 2020-06-30 …
已知数列{an}的通项公式为an=2^(n-1)+1则a1Cn^0+a2Cn^1+a3Cn^2+. 2020-07-09 …
已知点A(0,1/n),B(0,-1/n),C(4+1/n,0),其中n为正整数,设Sn表示△AB 2020-07-18 …
用>号或<号填空①若m>0,n>0,则m+n0;②若m<0,n<0,则m+n0;③若m>0,n<0 2020-07-19 …
阅读材料:若m2-2mn+2n2-8n+16=0,求m、n的值.∵m2-2mn+2n2-8n+16 2020-07-20 …
在二项式(ax^m+bx^n)(a>0,b>0,m,n≠0)中有2m+n=0,如果它的展开式里最在 2020-07-31 …
先阅读,再解决问题,例题:若m2+2mn+2n2-6n+9=0,求m和n的值.(1)若x2+2y2- 2020-11-03 …