早教吧 育儿知识 作业答案 考试题库 百科 知识分享

初三一元二次方程教科书练习题

题目详情
初三一元二次方程教科书练习题
▼优质解答
答案和解析
1、直接开平方法:直接开平方法就是用直接开平方求解一元二次方程的方法.用直接开平方法解形如(x-m)^2=n (n≥0)的方程,其解为x=m±√n 例1.解方程(1)(3x+1)^2=7 (2)9x^2-24x+16=11 分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)^2,右边=11>0,所以此方程也可用直接开平方法解.(3x+1)^2=7 ∴(3x+1)^2=7 ∴3x+1=±√7(注意不要丢解) ∴x= ...∴原方程的解为x1=...,x2= ...9x^2-24x+16=11 ∴(3x-4)^2=11 ∴3x-4=±√11 ∴x= ...∴原方程的解为x1=...,x2= ...2.配方法:例1 用配方法解方程 3x^2-4x-2=0 将常数项移到方程右边 3x^2-4x=2 将二次项系数化为1:x^2-x= 方程两边都加上一次项系数一半的平方:x^2-x+( )^2= +( )^2 配方:(x-)^2= 直接开平方得:x-=± ∴x= ∴原方程的解为x1=,x2= .3.公式法:把一元二次方程化成ax^2+bx+c的一般形式,然后把各项系数a,b,c的值代入求根公式就可得到方程的根.当b^2-4ac>0时,求根公式为x1=[-b+√(b^2-4ac)]/2a,x2=[-b-√(b^2-4ac)]/2a(两个不相等的实数根) 当b^2-4ac=0时,求根公式为x1=x2=-b/2a(两个相等的实数根) 当b^2-4ac0 ∴x= = = ∴原方程的解为x1=,x2= .4.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得的根,就是原方程的两个根.这种解一元二次方程的方法叫做因式分解法.例4.用因式分解法解下列方程:(1) (x+3)(x-6)=-8 (2) 2x^2+3x=0 (3) 6x^2+5x-50=0 (选学) (4)x^2-4x+4=0 (选学) (x+3)(x-6)=-8 化简整理得 x^2-3x-10=0 (方程左边为二次三项式,右边为零) (x-5)(x+2)=0 (方程左边分解因式) ∴x-5=0或x+2=0 (转化成两个一元一次方程) ∴x1=5,x2=-2是原方程的解.2x^2+3x=0 x(2x+3)=0 (用提公因式法将方程左边分解因式) ∴x=0或2x+3=0 (转化成两个一元一次方程) ∴x1=0,x2=-3/2是原方程的解.注意:有些同学做这种题目时容易丢掉x=0这个解,应记住一元二次方程有两个解.6x2+5x-50=0 (2x-5)(3x+10)=0 (十字相乘分解因式时要特别注意符号不要出错) ∴2x-5=0或3x+10=0 ∴x1=5/2,x2=-10/3 是原方程的解.x^2-4x+4 =0 (∵4 可分解为2 ·2 ,∴此题可用因式分解法) (x-2)(x-2 )=0 ∴x1=2 ,x2=2是原方程的解.