早教吧 育儿知识 作业答案 考试题库 百科 知识分享

自主学习,学以致用先阅读,再回答问题:如图1,已知△ABC中,AD为中线.延长AD至E,使DE=AD.在△ABD和△ECD中,AD=DE,∠ADB=∠EDC,BD=CD,所以,△ABD≌△ECD(SAS),进一步可得到AB=CE,AB∥CE

题目详情
自主学习,学以致用
先阅读,再回答问题:如图1,已知△ABC中,AD为中线.延长AD至E,使DE=AD.在△ABD和△ECD中,AD=DE,∠ADB=∠EDC,BD=CD,所以,△ABD≌△ECD(SAS),进一步可得到AB=CE,AB∥CE等结论.
在已知三角形的中线时,我们经常用“倍长中线”的辅助线来构造全等三角形,并进一步解决一些相关的计算或证明题.
解决问题:如图2,在△ABC中,AD是三角形的中线,F为AD上一点,且BF=AC,连结并延长BF交AC于点E,求证:AE=EF.
▼优质解答
答案和解析

证明:延长AD到G,使DF=DG,连接CG,
∵AD是中线,
∴BD=DC,
在△BDF和△CDG中
BD=DC
∠BDF=∠CDG
DF=DG

∴△BDF≌△CDG,
∴BF=CG,∠BFD=∠G,
∵∠AFE=∠BFD,
∴∠AFE=∠G,
∵BF=CG,BF=AC,
∴CG=AC,
∴∠G=∠CAF,
∴∠AFE=∠CAF,
∴AE=EF.