早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(2010•荆门)已知:如图一次函数y=x+1的图象与x轴交于点A,与y轴交于点B;二次函数y=x2+bx+c的图象与一次函数y=x+1的图象交于B、C两点,与x轴交于D、E两点且D点坐标为(1,0).(1)求二次

题目详情
(2010•荆门)已知:如图一次函数y=x+1的图象与x轴交于点A,与y轴交于点B;二次函数y=x2+bx+c的图象与一次函数y=x+1的图象交于B、C两点,与x轴交于D、E两点且D点坐标为(1,0).
(1)求二次函数的解析式;
(2)求四边形BDEC的面积S;
(3)在x轴上是否存在点P,使得△PBC是以P为直角顶点的直角三角形?若存在,求出所有的点P,若不存在,请说明理由.

▼优质解答
答案和解析
(1)根据直线BC的解析式,可求得点B的坐标,由于B、D都在抛物线的图象上,那么它们都满足该抛物线的解析式,通过联立方程组即可求得待定系数的值.
(2)根据抛物线的解析式,可求得E点的坐标,联立直线BC的解析式,可求得C点坐标;那么四边形BDEC的面积即可由△AEC、△ABD的面积差求得.
(3)假设存在符合条件的P点,连接BP、CP,过C作CF⊥x轴于F,若∠BPC=90°,则△BPO∽△CPF,可设出点P的坐标,分别表示出OP、PF的长,根据相似三角形所得比例线段即可求得点P的坐标.
【解析】
(1)将B(0,1),D(1,0)的坐标代入y=x2+bx+c,
得:
得解析式y=x2-x+1.(3分)
(2)设C(x,y)(x≠0,y≠0),
则有
解得
∴C(4,3)(6分)
由图可知:S四边形BDEC=S△ACE-S△ABD,又由对称轴为x=可知E(2,0),
∴S=AE•y-AD×OB=×4×3-×3×1=.(8分)
(3)设符合条件的点P存在,令P(a,0):
当P为直角顶点时,如图:过C作CF⊥x轴于F;
∵∠BPO+∠OBP=90°,∠BPO+∠CPF=90°,
∴∠OBP=∠FPC,
∴Rt△BOP∽Rt△PFC,


整理得a2-4a+3=0,
解得a=1或a=3;
∴所求的点P的坐标为(1,0)或(3,0),
综上所述:满足条件的点P共有2个.