早教吧作业答案频道 -->数学-->
已知:如图,P为等边△ABC内一点,∠APB=113°,∠APC=123°,试说明:以AP、BP、CP为边长可以构成一个三角形,并确定所构成三角形的各内角的度数.
题目详情
已知:如图,P为等边△ABC内一点,∠APB=113°,∠APC=123°,试说明:以AP、BP、CP为边长可以构成一个三角形,并确定所构成三角形的各内角的度数.
▼优质解答
答案和解析
将△APC绕点A顺时针旋转60°得△AQB,则△AQB≌△APC
∴BQ=CP,AQ=AP,
∵∠1+∠3=60°,
∴△APQ是等边三角形,
∴QP=AP,
∴△QBP就是以AP,BP,CP三边为边的三角形,
∵∠APB=113°,
∴∠6=∠APB-∠5=53°,
∵∠AQB=∠APC=123°,
∴∠7=∠AQB-∠4=63°,
∴∠QBP=180°-∠6-∠7=64°,
∴以AP,BP,CP为边的三角形的三内角的度数分别为64°,63°,53°.
∴BQ=CP,AQ=AP,
∵∠1+∠3=60°,
∴△APQ是等边三角形,
∴QP=AP,
∴△QBP就是以AP,BP,CP三边为边的三角形,
∵∠APB=113°,
∴∠6=∠APB-∠5=53°,
∵∠AQB=∠APC=123°,
∴∠7=∠AQB-∠4=63°,
∴∠QBP=180°-∠6-∠7=64°,
∴以AP,BP,CP为边的三角形的三内角的度数分别为64°,63°,53°.
看了 已知:如图,P为等边△ABC...的网友还看了以下:
判断由下列命题构成的p∨q,p∧q,非p形式的命题的真假:(1)p:负数的平方是正数,q:有理数是 2020-04-06 …
计算题(P/A,10%,4)=3.1699(P/F,10%,1)=0.9091(P/A,10%,5 2020-04-07 …
问概率与统计的问题1.设A,B,C构成一完备事件组,且P(A)=0.5,P(B)=0.3,则P(C 2020-05-13 …
1.如果点P(a+3,2a+4)在y轴上,则点P的坐标是 2.若点P在第四象限,且点P到x轴y轴的 2020-05-16 …
共用电子对数=8—最外层电子数.PCl5中P最外层电子数为5,那P共用电子对数就是3.判断是否满足 2020-05-22 …
在直角坐标系xOy中,已知两定点A(1,0),B(1,1).动点P(x,y)满足则点P构成在直角坐 2020-06-14 …
三相功率P=根号3*U*I*COSφ=660*U*I*COSφ,单相p=U*I*COSφ=220* 2020-07-19 …
已知直角坐标系平面内点A(4,0)B(2,-2),C(1,1)在直角坐标平面内求一点P,使点A,B 2020-07-31 …
用逻辑联结词“且”、“或”联结命题p,q,并判断复合命题“p且q”、“p或q”的真假:1、p:6是3 2020-12-07 …
大学概率课后习题提问!已知P(A)=1/2,若P(AB)=1/8,求P(A-B)(A乘以杠B的意思) 2020-12-13 …