早教吧作业答案频道 -->数学-->
已知数列Bn=1/(n^2+2n),其前n项和为Tn,求证Tn
题目详情
已知数列Bn=1/(n^2+2n),其前n项和为Tn,求证Tn
▼优质解答
答案和解析
Bn=1/(n^2+2n)=1/[n(n+2)]=1/2*[1/n-1/(n+2)]
Tn=1/2*(1-1/3)+1/2*(1/2-1/4)+1/2*(1/3-1/5)+1/2*(1/4-1/6)+...+1/2*[1/n-1/(n+2)]
=1/2*[1-1/3+1/2-1/4+1/3-1/5+1/4-1/6+.+1/n-1/(n+2)]
=1/2[1+1/2-1/(n+1)-1/(n+2)]
Tn=1/2*(1-1/3)+1/2*(1/2-1/4)+1/2*(1/3-1/5)+1/2*(1/4-1/6)+...+1/2*[1/n-1/(n+2)]
=1/2*[1-1/3+1/2-1/4+1/3-1/5+1/4-1/6+.+1/n-1/(n+2)]
=1/2[1+1/2-1/(n+1)-1/(n+2)]
看了 已知数列Bn=1/(n^2+...的网友还看了以下:
已知等比数列{an}共有n+1项,其首项a1=1,末项a(n+1)=2002,公比q>0(1)记T 2020-05-13 …
已知数列{an}的通项an=1/(n+3)+1/(n+4)+...+1/(2n+3),求使不等式a 2020-05-13 …
已知数列{an}的首项a1=1且存在常数p,r,t(其中r≠0),使得an+a(n+1)=r·2^ 2020-05-13 …
已知数列{an}的首项a1=1且存在常数p,r,t(其中r≠0),使得an+a(n+1)=r·2^ 2020-05-13 …
已知数列{an}的前n项和为Sn,且Sn=n^2+2n.数列{bn}中,b1=1,它的第n项bn是 2020-05-17 …
已知正项数列{an}中a1=2an^-an*a(n-1)-2n*a(n-1)-4n^2=0(n>= 2020-07-16 …
已知{an}是正项无穷数列,满足1/(an*a(n+1))+1/(a(n+1)*a(n+2))+1 2020-08-02 …
数列{an}前项和为(n+1)^2+t,则n+1项和为(n+2)^2+t两式相减,得第n+1项为:2 2020-11-24 …
lingo求救急MODEL:SETS:ID/1..4/;NO(ID):a,b,n;endsetsma 2020-12-19 …
高中数学1、已知等比数列{An}前n项和Sn=2*3^n=t,求t的值及数列{An}通向公式2、一个 2020-12-31 …