早教吧作业答案频道 -->数学-->
已知数列Bn=1/(n^2+2n),其前n项和为Tn,求证Tn
题目详情
已知数列Bn=1/(n^2+2n),其前n项和为Tn,求证Tn
▼优质解答
答案和解析
Bn=1/(n^2+2n)=1/[n(n+2)]=1/2*[1/n-1/(n+2)]
Tn=1/2*(1-1/3)+1/2*(1/2-1/4)+1/2*(1/3-1/5)+1/2*(1/4-1/6)+...+1/2*[1/n-1/(n+2)]
=1/2*[1-1/3+1/2-1/4+1/3-1/5+1/4-1/6+.+1/n-1/(n+2)]
=1/2[1+1/2-1/(n+1)-1/(n+2)]
Tn=1/2*(1-1/3)+1/2*(1/2-1/4)+1/2*(1/3-1/5)+1/2*(1/4-1/6)+...+1/2*[1/n-1/(n+2)]
=1/2*[1-1/3+1/2-1/4+1/3-1/5+1/4-1/6+.+1/n-1/(n+2)]
=1/2[1+1/2-1/(n+1)-1/(n+2)]
看了 已知数列Bn=1/(n^2+...的网友还看了以下:
已知等比数列{an}共有n+1项,其首项a1=1,末项a(n+1)=2002,公比q>0(1)记T 2020-05-13 …
已知数列{an}的首项a1=1且存在常数p,r,t(其中r≠0),使得an+a(n+1)=r·2^ 2020-05-13 …
已知数列{an}的首项a1=1且存在常数p,r,t(其中r≠0),使得an+a(n+1)=r·2^ 2020-05-13 …
已知:有一个数列T,T[n]=1+(j=0到n-1)累计加T[j];且T[0]=1.求证:T[n] 2020-05-14 …
已知:有一个数列T,T[n]=1+(j=0到n-1)累计加T[j];且T[0]=1.求证:T[n] 2020-05-14 …
已知点A(0,0),B(0,4),C(3,t+4),D(3,t).记N(t)为▱ABCD内部(不含 2020-06-21 …
已知点A(0,0),B(0,4),C(3,t+4),D(3,t).记N(t)为▱ABCD内部(不含 2020-06-21 …
已知点A(0,0),B(0,4),C(3,t+4),D(3,t).记N(t)为▱ABCD内部(不含 2020-06-21 …
设n阶矩阵A=E-a*a^T,其中a是n维非零列向量,证明1.A^2=A的充要条件是a^T*a设n 2020-06-23 …
已知(1+1/x)^x=e,e^x-1=x,limx→1(x+x^2+...+x^n-n)/(x-1 2020-10-31 …