早教吧作业答案频道 -->数学-->
已知O是△ABC的内一点,求证O是△ABC的重心的充要条件是OA+OB+OC=0向量解法
题目详情
已知O是△ABC的内一点,求证O是△ABC的重心的充要条件是OA+OB+OC=0
向量解法
向量解法
▼优质解答
答案和解析
必要性证明:设O为重心,E为BC中点.
OA=(2/3)EA==(2/3)(EB+BA)==(2/3)(CB/2+BA)=(CB+2BA)/3
同理,OB=(AC+2CB)/3.OC=(BA+2AC)/3.
CA+OB+OC=(3CB+3BA+3AC)/3=CC=0.
充分性证明:如图:OA={-x,-y}.OB={a-x.-y}.OC={b-x,c-y}.
OA+OB+OC={-x+a-x+b-x,-y-y+c-y}=0
-x+a-x+b-x=0.x=(a+b)/3.,-y-y+c-y=0,y=c/3.即O((a+b)/3,c/3)
请 564663878 朋友 自己验证.O((a+b)/3,c/3)正是⊿ABC的重心.
OA=(2/3)EA==(2/3)(EB+BA)==(2/3)(CB/2+BA)=(CB+2BA)/3
同理,OB=(AC+2CB)/3.OC=(BA+2AC)/3.
CA+OB+OC=(3CB+3BA+3AC)/3=CC=0.
充分性证明:如图:OA={-x,-y}.OB={a-x.-y}.OC={b-x,c-y}.
OA+OB+OC={-x+a-x+b-x,-y-y+c-y}=0
-x+a-x+b-x=0.x=(a+b)/3.,-y-y+c-y=0,y=c/3.即O((a+b)/3,c/3)
请 564663878 朋友 自己验证.O((a+b)/3,c/3)正是⊿ABC的重心.
看了 已知O是△ABC的内一点,求...的网友还看了以下:
求证一道数学分析题若函数f(x)=a0xn+a1xn-1+a2xn-2+…+an且a0不为0.已知 2020-05-17 …
设f(x)[0,π]上连续,且在(0,π)内可导,证明至少存在一点ξ∈(0,π),使得f'(ξ)+ 2020-06-13 …
证明题方程lnx=e^x-∫√(1-cos2x)dx积分上下限为0到π在(0,∞)内有且仅证明题方 2020-06-16 …
a、b为实数,关于x的方程|x2+ax+b|=2有三个不等的实数根.(1)求证:a2-4b-8=0 2020-06-22 …
一道奇怪的数学证明题:设定义在R上的连续函数f(x)满足f'(x)=f(x)且有f(0)=0,证一 2020-06-22 …
f(x)在[0,1]上有三阶导数,f(1)=0,设F(x)=x^3f(x),证(0,1)内一点A, 2020-06-22 …
设f(x)在闭区间[0,1]连续,在(0,1)内可导且f(0)=0,f(1)=1/3求证:彐ξ设f 2020-06-23 …
一道数学题读不懂1.一工程,甲乙合2又五分之2天完工,付1800元;乙丙和3又四分之三天完,付15 2020-06-27 …
设f(x)在[0,π]上可导,证明在(0,π)内至少存在一点ξ,使得…设f(x)在[0,π]上可导 2020-07-16 …
数学单调证明题设在区间[0,+∞)上,函数f(x)满足f(0)=0,f'(x)单调递增,证明:F( 2020-07-30 …