早教吧作业答案频道 -->数学-->
已知O是△ABC的内一点,求证O是△ABC的重心的充要条件是OA+OB+OC=0向量解法
题目详情
已知O是△ABC的内一点,求证O是△ABC的重心的充要条件是OA+OB+OC=0
向量解法
向量解法
▼优质解答
答案和解析
必要性证明:设O为重心,E为BC中点.
OA=(2/3)EA==(2/3)(EB+BA)==(2/3)(CB/2+BA)=(CB+2BA)/3
同理,OB=(AC+2CB)/3.OC=(BA+2AC)/3.
CA+OB+OC=(3CB+3BA+3AC)/3=CC=0.
充分性证明:如图:OA={-x,-y}.OB={a-x.-y}.OC={b-x,c-y}.
OA+OB+OC={-x+a-x+b-x,-y-y+c-y}=0
-x+a-x+b-x=0.x=(a+b)/3.,-y-y+c-y=0,y=c/3.即O((a+b)/3,c/3)
请 564663878 朋友 自己验证.O((a+b)/3,c/3)正是⊿ABC的重心.
OA=(2/3)EA==(2/3)(EB+BA)==(2/3)(CB/2+BA)=(CB+2BA)/3
同理,OB=(AC+2CB)/3.OC=(BA+2AC)/3.
CA+OB+OC=(3CB+3BA+3AC)/3=CC=0.
充分性证明:如图:OA={-x,-y}.OB={a-x.-y}.OC={b-x,c-y}.
OA+OB+OC={-x+a-x+b-x,-y-y+c-y}=0
-x+a-x+b-x=0.x=(a+b)/3.,-y-y+c-y=0,y=c/3.即O((a+b)/3,c/3)
请 564663878 朋友 自己验证.O((a+b)/3,c/3)正是⊿ABC的重心.
看了 已知O是△ABC的内一点,求...的网友还看了以下:
设事件A的概率P(A)=0,证明对于任意另一事件B,有A,B相互独立 2020-04-05 …
设a,b,c分别是三角形ABC的三个内角,A,B,C所对的边.则a的平方=b(b+c)是A=2B的 2020-04-05 …
已知A和B是两个命题,如果A是B的充分但不必要条件,那么¬A是¬B的()A.充分但不必要条件B.必 2020-05-17 …
档案是机关工作的______。A.唯一文件B.根据C.查考凭据 2020-05-31 …
下列有关西亚农牧业的叙述,错误的是()A.气温高是制约西亚农牧业发展的唯一条件B.阿富汗、伊朗等国 2020-06-11 …
设a,b,c是正数,P=a+b-c,Q=b+c-a,R=c+a-b,则“P·Q·R>0”是“P,Q 2020-06-12 …
A、B为集合,命题Ⅰ:A∩B=∅,命题Ⅱ:A、B中至少有一个空集,则I是Ⅱ的()A.充分非必要条件 2020-06-16 …
下列是已经发现的甲骨文中的部分文字,其中直接描述分封制度的是()A.四手共抬一物件B.巡行以卫城安 2020-07-02 …
1.若A:a∈R,|a|<1,B;x的二次方程x^2+(a+1)x+a-2=0的一个根大于零,另一 2020-07-20 …
函数是增函数,其区间导数一定大于0吗?某题,在区间(a,b)内f'(x)>0是f(x)是区间在(a 2020-07-31 …