早教吧作业答案频道 -->数学-->
已知O是△ABC的内一点,求证O是△ABC的重心的充要条件是OA+OB+OC=0向量解法
题目详情
已知O是△ABC的内一点,求证O是△ABC的重心的充要条件是OA+OB+OC=0
向量解法
向量解法
▼优质解答
答案和解析
必要性证明:设O为重心,E为BC中点.
OA=(2/3)EA==(2/3)(EB+BA)==(2/3)(CB/2+BA)=(CB+2BA)/3
同理,OB=(AC+2CB)/3.OC=(BA+2AC)/3.
CA+OB+OC=(3CB+3BA+3AC)/3=CC=0.
充分性证明:如图:OA={-x,-y}.OB={a-x.-y}.OC={b-x,c-y}.
OA+OB+OC={-x+a-x+b-x,-y-y+c-y}=0
-x+a-x+b-x=0.x=(a+b)/3.,-y-y+c-y=0,y=c/3.即O((a+b)/3,c/3)
请 564663878 朋友 自己验证.O((a+b)/3,c/3)正是⊿ABC的重心.
OA=(2/3)EA==(2/3)(EB+BA)==(2/3)(CB/2+BA)=(CB+2BA)/3
同理,OB=(AC+2CB)/3.OC=(BA+2AC)/3.
CA+OB+OC=(3CB+3BA+3AC)/3=CC=0.
充分性证明:如图:OA={-x,-y}.OB={a-x.-y}.OC={b-x,c-y}.
OA+OB+OC={-x+a-x+b-x,-y-y+c-y}=0
-x+a-x+b-x=0.x=(a+b)/3.,-y-y+c-y=0,y=c/3.即O((a+b)/3,c/3)
请 564663878 朋友 自己验证.O((a+b)/3,c/3)正是⊿ABC的重心.
看了 已知O是△ABC的内一点,求...的网友还看了以下:
如图,AB是圆O的直径,AB 6根号2,M是弧AB的中点,OC垂直OD,三角形COD绕点O旋转与三 2020-05-14 …
初三几何证明不要敷衍我AB是圆O直径,BC切圆O于B,OC平行于弦AD,连CD,过D做DE垂直AB 2020-05-15 …
一道空间向量的题目已知点G是△ABC的重心,O是空间内任意一点,若OA+OB+OC=λOG(都是向 2020-05-16 …
初三数学(圆和多边形)(简单的几道填空)哪位帮个忙~已知AB是○心O的弦,AB=8cm,OC⊥AB 2020-05-24 …
如图已知∠AOB=120,OC是∠AOB的平分线,P是OC上的一点,把三角板的60角的顶点重合于点 2020-06-02 …
探索如图,画∠AOB=120°及角平分线OC,把三角形的60°角的顶点放在OC上一点D处,绕点D旋 2020-06-02 …
AB是圆O的直径AB=6角CAD=30度,求弦长DCOA是圆O的半径,以OA为直径的圆C与圆O的弦 2020-06-06 …
AB.BC.CD分别与圆O切于E.F.G,且AB‖CD,连接OB.OC,延长CO交于点M,过点M作 2020-06-06 …
如图,半圆O中,将一块含60°的直角三角板的60°角顶点与圆心O重合,角的两条边分别与半圆圆弧交于 2020-06-13 …
如图,圆O中,AB是直径,OC垂直于AB,D是OC中点,DE//AB交圆O于E,求角EBC和角EB 2020-06-29 …