早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知函数y=f(x)与y=F(x)的图象关于y轴对称,当函数y=f(x)和y=F(x)在区间[a,b]同时递增或同时递减时,把区间[a,b]叫做函数y=f(x)的“不动区间”.若区间[1,2]为函数f(x)=|2x-t|的

题目详情

已知函数y=f(x)与y=F(x)的图象关于y轴对称,当函数y=f(x)和y=F(x)在区间[a,b]同时递增或同时递减时,把区间[a,b]叫做函数y=f(x)的“不动区间”.若区间[1,2]为函数f(x)=|2x-t|的“不动区间”,则实数t的取值范围是(  )

A. (0,2]

B. [

1
2
,+∞)

C. [

1
2
,2]

D. [

1
2
,2]∪[4,+∞)

▼优质解答
答案和解析
∵函数y=f(x)与y=F(x)的图象关于y轴对称,
∴F(x)=f(-x)=|2-x-t|,
∵区间[1,2]为函数f(x)=|2x-t|的“不动区间”,
∴函数f(x)=|2x-t|和函数F(x)=|2-x-t|在[1,2]上单调性相同,
∵y=2x-t和函数y=2-x-t的单调性相反,
∴(2x-t)(2-x-t)≤0在[1,2]上恒成立,
即1-t(2x+2-x)+t2≤0在[1,2]上恒成立,
即2-x≤t≤2x在[1,2]上恒成立,
1
2
≤t≤2,
故选:C