早教吧 育儿知识 作业答案 考试题库 百科 知识分享

过点P(2,3)向圆x2+y2=1作两条切线PA、PB,则弦AB所在直线的方程为()A.2x-3y-1=0B.2x+3y-1=0C.3x+2y-1=0D.3x-2y-1=0

题目详情
过点P(2,3)向圆x2+y2=1作两条切线PA、PB,则弦AB所在直线的方程为(  )
A. 2x-3y-1=0
B. 2x+3y-1=0
C. 3x+2y-1=0
D. 3x-2y-1=0
▼优质解答
答案和解析
∵PA为圆的切线,∴OA⊥PA,
∴|PA|2=4+9-1=12,
∴以P为圆心,|PA|为半径的圆方程为(x-2)2+(y-3)2=12,
∵AB为两圆的公共弦,
∴弦AB所在的直线方程为[(x-2)2+(y-3)2-12]-(x2+y2-1)=0,
整理得:2x+3y-1=0.
故选B