早教吧作业答案频道 -->数学-->
使用积分区域的轮换对称性的条件是什么呢?是积分区域X、Y互换不变吗?被积函数取绝对值能用吗主要讲下二重积分的情况,说简介一点,最好举个例子,
题目详情
使用积分区域的轮换对称性的条件是什么呢?
是积分区域X、Y互换不变吗?被积函数取绝对值能用吗
主要讲下二重积分的情况,说简介一点,最好举个例子,
是积分区域X、Y互换不变吗?被积函数取绝对值能用吗
主要讲下二重积分的情况,说简介一点,最好举个例子,
▼优质解答
答案和解析
坐标的轮换对称性,简单的说就是将坐标轴重新命名,如果积分区间的函数表达不变,则被积函数中的x,y,z也同样作变化后,积分值保持不变.
(1) 对于曲面积分,积分曲面为u(x,y,z)=0,如果将函数u(x,y,z)=0中的x,y,z换成y,z,x后,u(y,z,x)仍等于0,即u(y,z,x)=0,也就是积分曲面的方程没有变,那么在这个曲面上的积分 ∫∫f(x,y,z)dS=∫∫f(y,z,x)dS;如果将函数u(x,y,z)=0中的x,y,z换成y,x,z后,u(y,x,z)=0,那么在这个曲面上的积分 ∫∫f(x,y,z)dS=∫∫f(y,x,z)dS;如果将函数u(x,y,z)=0中的x,y,z换成z,x,y后,u(z,x,y)=0,那么在这个曲面上的积分 ∫∫f(x,y,z)dS=∫∫f(z,x,y)dS ,同样可以进行多种其它的变换.
(2) 对于第二类曲面积分只是将dxdy也同时变换即可.比如:如果将函数u(x,y,z)=0中的x,y,z换成y,z,x后,u(y,z,x)=0,那么在这个曲面上的积 分 ∫∫f(x,y,z)dxdy=∫∫f(y,z,x)dydz,∫∫f(x,y,z)dydz=∫∫f(y,z,x)dzdx,∫∫f(x,y,z)dzdx=∫∫f(y,z,x)dxdy.
(3) 将1中积分曲面中的z去掉,就变成了曲线积分满足的轮换对称性:积分曲线为u(x,y)=0,如果将函数u(x,y)=0中的x,y换成y,x后,仍满足u(y,x)= 0,那么在这个曲线上的积分 ∫∫f(x,y)ds=∫∫f(y,x)ds;实际上如果将函数u(x,y)=0中的x,y换成y,x后,仍满足u(y,x)=0,则意味着积分曲线关于直线y=x对称 .第二类和(2)总结相同.
(4) 二重积分和三重积分都和(1)的解释类似,也是看积分域函数将x,y,z更换顺序后,相当于将坐标轴重新命名,积分取间没有发生变化,则被积函数作相应变换后,积分值不变.
注意两点,一是被积函数关于某一变量的奇偶性,二是看一下积分区域,是否关于该变量坐标轴两边对称.
比如说2维空间,如果被积函数是X的积函数,那么考察积分区域,是否关于Y对称.如果想要考察X,Y坐标是否可对换,那么就需要考察积分区域是否关于y=x对称.
三维空间类似,如果被积函数是X的积函数,那么考察积分区域,看一下是否关于YZ平面对称.所谓的轮换对称,如果要满足的话,就需要三者之间都可互换了.
但是要注意,这里有一个特殊情况,就是对坐标的曲面积分,例如∫∫X^2dydz,如果x^2是关于YZ平面对称,x^2是偶函数,则这个积分是零,原因是对于坐标的曲面积分,前面和后面的积分符号刚好相反.
(1) 对于曲面积分,积分曲面为u(x,y,z)=0,如果将函数u(x,y,z)=0中的x,y,z换成y,z,x后,u(y,z,x)仍等于0,即u(y,z,x)=0,也就是积分曲面的方程没有变,那么在这个曲面上的积分 ∫∫f(x,y,z)dS=∫∫f(y,z,x)dS;如果将函数u(x,y,z)=0中的x,y,z换成y,x,z后,u(y,x,z)=0,那么在这个曲面上的积分 ∫∫f(x,y,z)dS=∫∫f(y,x,z)dS;如果将函数u(x,y,z)=0中的x,y,z换成z,x,y后,u(z,x,y)=0,那么在这个曲面上的积分 ∫∫f(x,y,z)dS=∫∫f(z,x,y)dS ,同样可以进行多种其它的变换.
(2) 对于第二类曲面积分只是将dxdy也同时变换即可.比如:如果将函数u(x,y,z)=0中的x,y,z换成y,z,x后,u(y,z,x)=0,那么在这个曲面上的积 分 ∫∫f(x,y,z)dxdy=∫∫f(y,z,x)dydz,∫∫f(x,y,z)dydz=∫∫f(y,z,x)dzdx,∫∫f(x,y,z)dzdx=∫∫f(y,z,x)dxdy.
(3) 将1中积分曲面中的z去掉,就变成了曲线积分满足的轮换对称性:积分曲线为u(x,y)=0,如果将函数u(x,y)=0中的x,y换成y,x后,仍满足u(y,x)= 0,那么在这个曲线上的积分 ∫∫f(x,y)ds=∫∫f(y,x)ds;实际上如果将函数u(x,y)=0中的x,y换成y,x后,仍满足u(y,x)=0,则意味着积分曲线关于直线y=x对称 .第二类和(2)总结相同.
(4) 二重积分和三重积分都和(1)的解释类似,也是看积分域函数将x,y,z更换顺序后,相当于将坐标轴重新命名,积分取间没有发生变化,则被积函数作相应变换后,积分值不变.
注意两点,一是被积函数关于某一变量的奇偶性,二是看一下积分区域,是否关于该变量坐标轴两边对称.
比如说2维空间,如果被积函数是X的积函数,那么考察积分区域,是否关于Y对称.如果想要考察X,Y坐标是否可对换,那么就需要考察积分区域是否关于y=x对称.
三维空间类似,如果被积函数是X的积函数,那么考察积分区域,看一下是否关于YZ平面对称.所谓的轮换对称,如果要满足的话,就需要三者之间都可互换了.
但是要注意,这里有一个特殊情况,就是对坐标的曲面积分,例如∫∫X^2dydz,如果x^2是关于YZ平面对称,x^2是偶函数,则这个积分是零,原因是对于坐标的曲面积分,前面和后面的积分符号刚好相反.
看了 使用积分区域的轮换对称性的条...的网友还看了以下:
分生区和根尖分生区1.分生区只有在植物根冠的部位吗?植物别的地方没有分生区吗?也就是说分生区等于跟 2020-06-10 …
英语翻译XX区XX路XX小区2区XX栋XX室(主要是我们小区还分一区二区三区的-.-完全不知道怎么 2020-06-15 …
根尖分生区细胞能进行光合作用吗?根尖分生区细胞没有叶绿体,光合作用的发生不一定要叶绿体,是需要叶绿 2020-06-15 …
怎么区分开区间闭区间半开区间怎么区分什么是开区间闭区间半开区间啊,请讲的通俗一点.请告诉我他们都有 2020-06-23 …
急求have的几个用法区别以及伴随状态的用法区别havesthdone[有没havesbdone? 2020-07-22 …
多个无公共部分区间的并集是区间吗单调区间一定是连续的吗当同增(减)单调区间有多个时区间什么时候能写 2020-07-30 …
英语小问题each是用在两者之间吗?麻烦大家帮忙区分一下像both,every等用在两者或者三者及以 2020-12-14 …
分子的电子式怎么写?有什么规定和规律吗?分子的电子式怎么写?有什么规定和规律吗?什么情况下要用括号? 2020-12-17 …
by,with,in这三个词都有“通过……,使用……”的意思,具体应当怎么区分?用某种方式不是用in 2021-01-05 …
语文中的文言文,主语动词和宾语动词怎么区分,麻烦举例.使动和意动是属于宾语动词吗,怎么区分.语文中的 2021-01-12 …