早教吧作业答案频道 -->语文-->
人呼吸消耗氧,为什么会呼出二氧化碳?C是从哪里来?人吸氧气,呼出二氧化碳,其中二氧化碳中的C元素从哪里来?
题目详情
人呼吸消耗氧,为什么会呼出二氧化碳?C是从哪里来?
人吸氧气,呼出二氧化碳,其中二氧化碳中的C元素从哪里来?
人吸氧气,呼出二氧化碳,其中二氧化碳中的C元素从哪里来?
▼优质解答
答案和解析
有氧呼吸是指细胞在氧气的参与下,通过酶的催化作用,把糖类等有机物彻底氧化分解,产生出二氧化碳和水,同时释放出大量的能量的过程.有氧呼吸是高等动植物进行呼吸作用的主要形式.
有氧呼吸是高等动、植物进行呼吸作用的主要形式,通常所说的呼吸作用就是指有氧呼吸.
有氧呼吸的三个阶段
A、第一阶段:在细胞质的基质中,一个分子的葡萄糖分解成两个分子的丙酮酸,同时脱下4个[H]酶;在葡萄糖分解的过程中释放出少量的能量,其中一部分能量用于合成ATP,产生少量的ATP.这一阶段不需要氧的参与,是在细胞质基质中进行的.反应式:C6H12O6酶→2丙酮酸+4[H]+少量能量
B、第二阶段:丙酮酸进入线粒体的基质中,两分子丙酮酸和6个水分子中的氢全部脱下,共脱下20个[H],丙酮被氧化分解成二氧化碳;在此过程释放少量的能量,其中一部分用于合成ATP,产生少量的能量.这一阶段也不需要氧的参与,是在线粒体基质中进行的.反应式:2丙酮酸+6H2O酶→20[H]+6CO2+少量能量
C、第三阶段:在线粒体的内膜上,前两阶段脱下的共24个[H]与从外界吸收或叶绿体光合作用产生的6个O2结合成水;在此过程中释放大量的能量,其中一部分能量用于合成ATP,产生大量的能量.这一阶段需要氧的参与,是在线粒体内膜上进行的.反应式:24[H]+6O2酶→12H2O+大量能量
[H]是一种十分简化的表示方式.这一过程中实际上是氧化型辅酶Ⅰ(NAD+)转化成还原性辅酶Ⅰ(NADH).
有氧呼吸主要在线粒体内,而无氧呼吸主要在细胞基质内.
有氧呼吸需要分子氧参加,而无氧呼吸不需要分子氧参加
有氧呼吸分解产物是二氧化碳和水,无氧呼吸分解产物是:酒精或者乳酸
有氧呼吸释放能量较多,无氧呼吸释放能量较少. [编辑本段]有氧呼吸过程中能量变化 在有氧呼吸过程中,葡萄糖彻底氧化分解,1mol的葡萄糖在彻底氧化分解以后,共释放出2870kJ的能量,其中有1161kJ的能量储存在ATP中,其余的能量都以热能的形式散失了. [编辑本段]有氧呼吸的方程式 第一阶段 C6H12O6酶→细胞质基质=2丙酮酸(C3H4O3)+4[H]+能量(2ATP)
第二阶段 2丙酮酸(C3H4O3)+6H2O酶→线粒体基质=6CO2+20[H]+能量(2ATP)
第三阶段 24[H]+6O2酶→线粒体内膜=12H2O+能量(34ATP)
总反应式 C6H12O6+6H2O+6O2酶→6CO2+12H2O+大量能量(38ATP) [编辑本段]有更详细的在这里: 有氧呼吸 - 介绍指物质在细胞内的氧化分解,具体表现为氧的消耗和二氧化碳、水及三磷酸腺苷(ATP)的生成,又称细胞呼吸.其根本意义在于给机体提供可利用的能量.细胞呼吸可分为3个阶段,在第1阶段中,各种能源物质循不同的分解代谢途径转变成乙酰辅酶A.在第2阶段中,乙酰辅酶A(乙酰CoA)的二碳乙酰基,通过三羧酸循环转变为CO2和氢原子.在第3阶段中,氢原子进入电子传递链(呼吸链),最后传递给氧,与之生成水;同时通过电子传递过程伴随发生的氧化磷酸化作用产生ATP分子.生物体主要通过脱羧反应产生CO2,即代谢物先转变成含有羧基(-COOH)的羧酸,然后在专一的脱羧酶催化下,从羧基中脱去CO2.细胞中的氧化反应可以“脱氢”、“加氧”或“失电子”等多种方式进行,而以脱氢方式最为普遍,也最重要.在细胞呼吸的第1阶段中包括一些脱羧和氧化反应,但在三羧酸循环中更为集中.三羧酸循环是在需氧生物中普遍存在的环状反应序列.循环由连续的酶促反应组成,反应中间物质都是含有3个羧基的三羧酸或含有2个羧基的二羧酸,故称三羧酸循环.因柠檬酸是环上物质,又称柠檬酸循环.也可用发现者的名子命名为克雷布斯循环.在循环开始时,一个乙酰基以乙酰-CoA的形式,与一分子四碳化合物草酰乙酸缩合成六碳三羧基化合物柠檬酸.柠檬酸然后转变成另一个六碳三羧酸异柠檬酸.异柠檬酸脱氢并失去CO2,生成五碳二羧酸α-酮戊二酸.后者再脱去1个CO2,产生四碳二羧酸琥珀酸.最后琥珀酸经过三步反应,脱去2对氢又转变成草酰乙酸.再生的草酰乙酸可与另一分子的乙酰CoA反应,开始另一次循环.循环每运行一周,消耗一分子乙酰基(二碳),产生2分子CO2和4对氢.草酰乙酸参加了循环反应,但没有净消耗.如果没有其他反应消除草酰乙酸,理论上一分子草酰乙酸可以引起无限的乙酰基进行氧化.环上的羧酸化合物都有催化作用,只要小量即可推动循环.凡能转变成乙酰CoA或三羧酸循环上任何一种催化剂的物质,都能参加这循环而被氧化.所以此循环是各种物质氧化的共同机制,也是各种物质代谢相互联系的机制.三羧酸循环必须在有氧的情况下进行.环上脱下的氢进入呼吸链,最后与氧结合成水并产生ATP,这个过程是生物体内能量的主要来源.呼吸链由一系列按特定顺序排列的结合蛋白质组成.链中每个成员,从前面的成员接受氢或电子,又传递给下一个成员,最后传递给氧.在电子传递的过程中,逐步释放自由能,同时将其中大部分能量,通过氧化磷酸化作用贮存在ATP分子中.不同生物,甚至同一生物的不同组织的呼吸链都可能不同.有的呼吸链只含有一种酶,也有的呼吸链含有多种酶.但大多数呼吸链由下列成分组成,即:烟酰胺脱氢酶类、黄素蛋白类、铁硫蛋白类、辅酶Q和细胞色素类.这些结合蛋白质的辅基(或辅酶)部分,在呼吸链上不断地被氧化和还原,起着传递氢(递氢体)或电子(递电子体)的作用.其蛋白质部分,则决定酶的专一性.为简化起见,书写呼吸链时常略去其蛋白质部分.上图即是存在最广泛的NADH呼吸链和另一种FADH2呼吸链.图中用MH2代表任一还原型代谢物,如苹果酸.可在专一的烟酰胺脱氢酶(苹果酸脱氢酶)的催化下,脱去一对氢成为氧化产物M(草酰乙酸).这类脱氢酶,以NAD+(烟酰胺腺嘌呤二核苷酸)或NADP+(烟酰胺腺嘌呤二核苷酸磷酸)为辅酶.这两种辅酶都含有烟酰胺(维生素PP).在脱氢反应中,辅酶可接受1个氢和1个电子成为还原型辅酶,剩余的1个H+留在液体介质中.
NAD++2H(2H++2e)NADH+H+
NADP++2H(2H++2e)NADPH+H+
黄素蛋白类是以黄素腺嘌呤二核苷酸(FAD)或黄素单核苷酸(FMN)为辅基的脱氢酶,其辅基中含核黄素(维生素B2).NADH脱氢酶就是一种黄素蛋白,可以将NADH的氢原子加到辅基FMN上,在NADH呼吸链中起递氢体作用.琥珀酸脱氢酶也是一种黄素蛋白,可以将底物琥珀酸的1对氢原子直接加到辅基FAD上,使其氧化生成延胡索酸.FADH2继续将H传递给FADH2呼吸链中的下一个成员,所以FADH2呼吸链比NADH呼吸链短,伴随着呼吸链产生的ATP也略少.铁硫蛋白类的活性部位含硫及非卟啉铁,故称铁硫中心.其作用是通过铁的变价传递电子:Fe3++eFe2+.这类蛋白质在线粒体内膜上,常和黄素脱氢酶或细胞色素结合成复合物.在从NADH到氧的呼吸链中,有多个不同的铁硫中心,有的在NADH脱氢酶中,有的和细胞色素b及c1有关.辅酶Q是一种脂溶性醌类化合物,因广泛存在于生物界故又名泛醌.其分子中的苯醌结构能可逆地加氢还原成对苯二酚衍生物,在呼吸链中起中间传递体的作用.细胞色素是一类以铁卟啉(与血红素的结构类似)为辅基的红色或棕色蛋白质,在呼吸链中依靠铁的化合价变化而传递电子:Fe3++eFe2+.目前,发现的细胞色素有 b、c、c1、aa3等多种.这些细胞色素的蛋白质结构、辅基结构及辅基与蛋白质部分的连接方式均有差异.在典型的呼吸链中,其顺序是b→c1→c→aa3→O2.现在还不能把a和a3分开,而且只有aa3能直接被分子氧氧化,故将a和a3写在一起并称之为细胞色素氧化酶.生物界各种呼吸链的差异主要在于组分不同,或缺少某些中间传递体,或中间传递体的成分不同.如在分枝杆菌中用维生素K代替辅酶Q;又如许多细菌没有完整的细胞色素系统.呼吸链的组成虽然有许多差异,但其传递电子的顺序却基本一致.生物进化越高级,呼吸链就越完善.与呼吸链偶联的ATP生成作用叫做氧化磷酸化.NADH呼吸链每传递1对氢原子到氧,产生3个ATP分子.FADH2呼吸链则只生成2个ATP分子.
有氧呼吸是高等动、植物进行呼吸作用的主要形式,通常所说的呼吸作用就是指有氧呼吸.
有氧呼吸的三个阶段
A、第一阶段:在细胞质的基质中,一个分子的葡萄糖分解成两个分子的丙酮酸,同时脱下4个[H]酶;在葡萄糖分解的过程中释放出少量的能量,其中一部分能量用于合成ATP,产生少量的ATP.这一阶段不需要氧的参与,是在细胞质基质中进行的.反应式:C6H12O6酶→2丙酮酸+4[H]+少量能量
B、第二阶段:丙酮酸进入线粒体的基质中,两分子丙酮酸和6个水分子中的氢全部脱下,共脱下20个[H],丙酮被氧化分解成二氧化碳;在此过程释放少量的能量,其中一部分用于合成ATP,产生少量的能量.这一阶段也不需要氧的参与,是在线粒体基质中进行的.反应式:2丙酮酸+6H2O酶→20[H]+6CO2+少量能量
C、第三阶段:在线粒体的内膜上,前两阶段脱下的共24个[H]与从外界吸收或叶绿体光合作用产生的6个O2结合成水;在此过程中释放大量的能量,其中一部分能量用于合成ATP,产生大量的能量.这一阶段需要氧的参与,是在线粒体内膜上进行的.反应式:24[H]+6O2酶→12H2O+大量能量
[H]是一种十分简化的表示方式.这一过程中实际上是氧化型辅酶Ⅰ(NAD+)转化成还原性辅酶Ⅰ(NADH).
有氧呼吸主要在线粒体内,而无氧呼吸主要在细胞基质内.
有氧呼吸需要分子氧参加,而无氧呼吸不需要分子氧参加
有氧呼吸分解产物是二氧化碳和水,无氧呼吸分解产物是:酒精或者乳酸
有氧呼吸释放能量较多,无氧呼吸释放能量较少. [编辑本段]有氧呼吸过程中能量变化 在有氧呼吸过程中,葡萄糖彻底氧化分解,1mol的葡萄糖在彻底氧化分解以后,共释放出2870kJ的能量,其中有1161kJ的能量储存在ATP中,其余的能量都以热能的形式散失了. [编辑本段]有氧呼吸的方程式 第一阶段 C6H12O6酶→细胞质基质=2丙酮酸(C3H4O3)+4[H]+能量(2ATP)
第二阶段 2丙酮酸(C3H4O3)+6H2O酶→线粒体基质=6CO2+20[H]+能量(2ATP)
第三阶段 24[H]+6O2酶→线粒体内膜=12H2O+能量(34ATP)
总反应式 C6H12O6+6H2O+6O2酶→6CO2+12H2O+大量能量(38ATP) [编辑本段]有更详细的在这里: 有氧呼吸 - 介绍指物质在细胞内的氧化分解,具体表现为氧的消耗和二氧化碳、水及三磷酸腺苷(ATP)的生成,又称细胞呼吸.其根本意义在于给机体提供可利用的能量.细胞呼吸可分为3个阶段,在第1阶段中,各种能源物质循不同的分解代谢途径转变成乙酰辅酶A.在第2阶段中,乙酰辅酶A(乙酰CoA)的二碳乙酰基,通过三羧酸循环转变为CO2和氢原子.在第3阶段中,氢原子进入电子传递链(呼吸链),最后传递给氧,与之生成水;同时通过电子传递过程伴随发生的氧化磷酸化作用产生ATP分子.生物体主要通过脱羧反应产生CO2,即代谢物先转变成含有羧基(-COOH)的羧酸,然后在专一的脱羧酶催化下,从羧基中脱去CO2.细胞中的氧化反应可以“脱氢”、“加氧”或“失电子”等多种方式进行,而以脱氢方式最为普遍,也最重要.在细胞呼吸的第1阶段中包括一些脱羧和氧化反应,但在三羧酸循环中更为集中.三羧酸循环是在需氧生物中普遍存在的环状反应序列.循环由连续的酶促反应组成,反应中间物质都是含有3个羧基的三羧酸或含有2个羧基的二羧酸,故称三羧酸循环.因柠檬酸是环上物质,又称柠檬酸循环.也可用发现者的名子命名为克雷布斯循环.在循环开始时,一个乙酰基以乙酰-CoA的形式,与一分子四碳化合物草酰乙酸缩合成六碳三羧基化合物柠檬酸.柠檬酸然后转变成另一个六碳三羧酸异柠檬酸.异柠檬酸脱氢并失去CO2,生成五碳二羧酸α-酮戊二酸.后者再脱去1个CO2,产生四碳二羧酸琥珀酸.最后琥珀酸经过三步反应,脱去2对氢又转变成草酰乙酸.再生的草酰乙酸可与另一分子的乙酰CoA反应,开始另一次循环.循环每运行一周,消耗一分子乙酰基(二碳),产生2分子CO2和4对氢.草酰乙酸参加了循环反应,但没有净消耗.如果没有其他反应消除草酰乙酸,理论上一分子草酰乙酸可以引起无限的乙酰基进行氧化.环上的羧酸化合物都有催化作用,只要小量即可推动循环.凡能转变成乙酰CoA或三羧酸循环上任何一种催化剂的物质,都能参加这循环而被氧化.所以此循环是各种物质氧化的共同机制,也是各种物质代谢相互联系的机制.三羧酸循环必须在有氧的情况下进行.环上脱下的氢进入呼吸链,最后与氧结合成水并产生ATP,这个过程是生物体内能量的主要来源.呼吸链由一系列按特定顺序排列的结合蛋白质组成.链中每个成员,从前面的成员接受氢或电子,又传递给下一个成员,最后传递给氧.在电子传递的过程中,逐步释放自由能,同时将其中大部分能量,通过氧化磷酸化作用贮存在ATP分子中.不同生物,甚至同一生物的不同组织的呼吸链都可能不同.有的呼吸链只含有一种酶,也有的呼吸链含有多种酶.但大多数呼吸链由下列成分组成,即:烟酰胺脱氢酶类、黄素蛋白类、铁硫蛋白类、辅酶Q和细胞色素类.这些结合蛋白质的辅基(或辅酶)部分,在呼吸链上不断地被氧化和还原,起着传递氢(递氢体)或电子(递电子体)的作用.其蛋白质部分,则决定酶的专一性.为简化起见,书写呼吸链时常略去其蛋白质部分.上图即是存在最广泛的NADH呼吸链和另一种FADH2呼吸链.图中用MH2代表任一还原型代谢物,如苹果酸.可在专一的烟酰胺脱氢酶(苹果酸脱氢酶)的催化下,脱去一对氢成为氧化产物M(草酰乙酸).这类脱氢酶,以NAD+(烟酰胺腺嘌呤二核苷酸)或NADP+(烟酰胺腺嘌呤二核苷酸磷酸)为辅酶.这两种辅酶都含有烟酰胺(维生素PP).在脱氢反应中,辅酶可接受1个氢和1个电子成为还原型辅酶,剩余的1个H+留在液体介质中.
NAD++2H(2H++2e)NADH+H+
NADP++2H(2H++2e)NADPH+H+
黄素蛋白类是以黄素腺嘌呤二核苷酸(FAD)或黄素单核苷酸(FMN)为辅基的脱氢酶,其辅基中含核黄素(维生素B2).NADH脱氢酶就是一种黄素蛋白,可以将NADH的氢原子加到辅基FMN上,在NADH呼吸链中起递氢体作用.琥珀酸脱氢酶也是一种黄素蛋白,可以将底物琥珀酸的1对氢原子直接加到辅基FAD上,使其氧化生成延胡索酸.FADH2继续将H传递给FADH2呼吸链中的下一个成员,所以FADH2呼吸链比NADH呼吸链短,伴随着呼吸链产生的ATP也略少.铁硫蛋白类的活性部位含硫及非卟啉铁,故称铁硫中心.其作用是通过铁的变价传递电子:Fe3++eFe2+.这类蛋白质在线粒体内膜上,常和黄素脱氢酶或细胞色素结合成复合物.在从NADH到氧的呼吸链中,有多个不同的铁硫中心,有的在NADH脱氢酶中,有的和细胞色素b及c1有关.辅酶Q是一种脂溶性醌类化合物,因广泛存在于生物界故又名泛醌.其分子中的苯醌结构能可逆地加氢还原成对苯二酚衍生物,在呼吸链中起中间传递体的作用.细胞色素是一类以铁卟啉(与血红素的结构类似)为辅基的红色或棕色蛋白质,在呼吸链中依靠铁的化合价变化而传递电子:Fe3++eFe2+.目前,发现的细胞色素有 b、c、c1、aa3等多种.这些细胞色素的蛋白质结构、辅基结构及辅基与蛋白质部分的连接方式均有差异.在典型的呼吸链中,其顺序是b→c1→c→aa3→O2.现在还不能把a和a3分开,而且只有aa3能直接被分子氧氧化,故将a和a3写在一起并称之为细胞色素氧化酶.生物界各种呼吸链的差异主要在于组分不同,或缺少某些中间传递体,或中间传递体的成分不同.如在分枝杆菌中用维生素K代替辅酶Q;又如许多细菌没有完整的细胞色素系统.呼吸链的组成虽然有许多差异,但其传递电子的顺序却基本一致.生物进化越高级,呼吸链就越完善.与呼吸链偶联的ATP生成作用叫做氧化磷酸化.NADH呼吸链每传递1对氢原子到氧,产生3个ATP分子.FADH2呼吸链则只生成2个ATP分子.
看了 人呼吸消耗氧,为什么会呼出二...的网友还看了以下:
一氧化氮和二氧化氮用什么化学方法加以鉴定哪个是一氧化氮,哪一个是二氧化氮.要三种化学方法 2020-05-15 …
空气,氧气,水蒸气,二氧化碳,高锰酸钾,铁粉,氮气,氧化铁哪些是混合物,哪些是纯净物,哪些是单质, 2020-05-16 …
请教一道二元一次方程,如果将二元一次方程组的解x=a,y=b表示成(a,b)那么用A(-1.2), 2020-05-22 …
己二酸与下列哪个化合物反应能形成聚合物?为什么A、乙醇B、乙二醇C、甘油D、苯胺E、己二胺 2020-05-23 …
‘化简下面各小数0.0300等于2.540二0.4050二3.000二0.7800二‘化简下面各小 2020-06-02 …
下列物质.空气,氧气,二氧化硫,五氧化二磷,高锰酸钾,路酸钾,氯化钾,河水,糖水,汽水哪些是混合物 2020-06-04 …
1,一摩SiO2中有几摩硅氧键?为什么?2,二氧化硅和碳化硅哪个熔点高?为什么?(好象是什么反.. 2020-06-28 …
下列描述哪些是物理变化,哪些是化学变化,哪些是物理性质,哪些是化学性质A.铜绿受热时会分解;B.纯 2020-07-15 …
关于氧化剂,与还原剂的确定问题?当反应物,生成物都含有同一种元素,且只有这种元素化合价前后有变化, 2020-07-25 …
氢气置换当中,用二氧化碳置换氢气时,应测二氧化碳的浓度是指哪方面?二氧化碳在空气中的浓度,还是二化碳 2021-01-07 …