早教吧作业答案频道 -->数学-->
∫1/(x^2+1)^2dx怎么算?
题目详情
∫1/(x^2+1)^2dx 怎么算?
▼优质解答
答案和解析
换元法,令x=tanu,则x²+1=sec²u,dx=sec²udu
∫1/(x^2+1)^2dx
=∫(1/sec⁴u)*sec²udu
=∫(1/sec²u)du
=∫cos²udu
=1/2∫(1+cos2u)du
=(1/2)u+(1/4)sin2u+C
=(1/2)u+(1/2)sinucosu+C
由x=tanu得:u=arctanx,sinu=x/√(1+x²),cosu=1/√(1+x²)
=(1/2)arctanx+(1/2)x/(1+x²)+C
∫1/(x^2+1)^2dx
=∫(1/sec⁴u)*sec²udu
=∫(1/sec²u)du
=∫cos²udu
=1/2∫(1+cos2u)du
=(1/2)u+(1/4)sin2u+C
=(1/2)u+(1/2)sinucosu+C
由x=tanu得:u=arctanx,sinu=x/√(1+x²),cosu=1/√(1+x²)
=(1/2)arctanx+(1/2)x/(1+x²)+C
看了 ∫1/(x^2+1)^2dx...的网友还看了以下: