早教吧 育儿知识 作业答案 考试题库 百科 知识分享

动量守恒的问题(小球飞出半圆型轨道最高点)如图所示,ABC是光滑的轨道,其中ab水平的,bc为与ab相切的位于竖直平面内的半圆,半径R质量m的小球A静止在轨道上,另一个质量M速度为V0的小球B

题目详情
动量守恒的问题(小球飞出半圆型轨道最高点)
如图所示,ABC是光滑的轨道,其中ab水平的 ,bc为与ab相切的位于竖直平面内的半圆,半径R 质量m的小球A静止在轨道上,另一个质量M速度为V0的小球B与小球A正碰.已知相碰后小球A经过半圆的最高点c楼道轨道上距b点为L=4(跟号2)R处,重力加速度g,求碰撞结束后A B速度大小.
图片地址 没有E和箭头
▼优质解答
答案和解析
倒着推吧
平抛运动:2R=1/2·g(t方)
L=v't
所以v'=根号(8gR)
动能定理:mg2R=1/2m(vA方-v'方)
所以vA=根号(12gR)
动量守恒:Mv0=MvB+mvA
所以vB=v0-m·根号(12gR)/M
看了 动量守恒的问题(小球飞出半圆...的网友还看了以下: