早教吧 育儿知识 作业答案 考试题库 百科 知识分享

设直线系M:xcosθ+(y-2)sinθ=1(0≤θ≤2π),对于下列四个命题:(1)M中所有直线均经过一个定点;(2)存在定点P不在M中的任一条直线上;(3)对于任意正整数n(n≥3),存在正n边形,

题目详情
设直线系M:xcosθ+(y-2)sinθ=1(0≤θ≤2π),对于下列四个命题:
(1)M中所有直线均经过一个定点;
(2)存在定点P不在M中的任一条直线上;
(3)对于任意正整数n(n≥3),存在正n边形,其所有边均在M中的直线上;
(4)M中的直线所能围成的正三角形面积都相等.
其中真命题的序号是 ___ .
▼优质解答
答案和解析
作业帮 由 直线系M:xcosθ+(y-2)sinθ=1(0≤θ≤2π),
可令  
x=cosθ
y=2+sinθ

消去θ可得  x2+(y-2)2=1,故 直线系M表示圆 x2+(y-2)2=1 的
切线的集合,故(1)不正确.
因为对任意θ,存在定点(0,2)不在直线系M中的任意一条上,故(2)正确.
由于圆 x2+(y-2)2=1 的外切正n 边形,所有的边都在直线系M中,
故(3)正确.
M中的直线所能围成的正三角形的边长不一等,故它们的面积不一定相等,
如图中等边三角形ABC和 ADE面积不相等,故(4)不正确.
综上,正确的命题是 (2)、(3),
故答案为:(2)、(3).