早教吧 育儿知识 作业答案 考试题库 百科 知识分享

f(x)在[0,1]可导,f(x)满足f(0)=0,f(1)=1证明对任意的正数a,b,a/f'(x1)+b/f'(x2)=a+bf(x)在[0,1]可导,f(x)满足f(0)=0,f(1)=1证明对任意的正数a,b,至少存在两点x1,x2(0,1)使得a/f'(x1)+b/f'(x2)=a+b

题目详情
f(x)在[0,1]可导,f(x)满足f(0)=0,f(1)=1证明对任意的正数a,b,a/f'(x1)+b/f'(x2)=a+b
f(x)在[0,1]可导,f(x)满足f(0)=0,f(1)=1证明对任意的正数a,b,至少存在两点x1,x2(0,1)使得a/f'(x1)+b/f'(x2)=a+b
▼优质解答
答案和解析