早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如何证明一个抽象函数在定于区间内可导,一般步骤是什么f(x)在(0,+无穷)上连续,且对任意X1X2(x1x2在定义区间内)有f(x1乘以x2)=f(x1)+f(x2),已知f'(1)=1,证明f(x)在(0,+无穷)上可导,并求出f‘(x)

题目详情
如何证明一个抽象函数在定于区间内可导,一般步骤是什么
f(x)在(0,+无穷)上连续,且对任意X1 X2(x1x2在定义区间内)有f(x1乘以x2)=f(x1)+f(x2),已知f'(1)=1,证明f(x)在(0,+无穷)上可导,并求出f‘(x)
▼优质解答
答案和解析
取x1=x2=1
则f(1*1)=f(1)+f(1)
故f(1)=0
取x1=x,x2=1/y
得f(x/y)=f(x)+f(1/y)
而f(y*1/y)=f(y)+f(1/y)=f(1)=0
故f(1/y)=-f(y)
故得f(x)-f(y)=f(x/y)
以上都是为下面做准备,主要得出了f(1)=0和f(x)-f(y)=f(x/y)两个结论
由f'(1)=1,即lim(h->0) [f(1+h)-f(1)]/h=lim(h->0) f(1+h)/h = 1
而f'(x)=lim(h->0) [f(x+h)-f(x)]/h=lim(h->0) f(1 + h/x)/h = (1/x) * lim(h->0) f(1+h/x)/(h/x)=1/x
所以f(x)在(0,+无穷)上可导,而f'(x)=1/x
看了 如何证明一个抽象函数在定于区...的网友还看了以下: