早教吧作业答案频道 -->数学-->
如图所示,在四边形ABCD中,AM=MN=ND,BE=EF=FC,四边形ABEM,MEFN,NFCD的面积分别记为S1,S2和S3,则S2S1+S3值等于.
题目详情
如图所示,在四边形ABCD中,AM=MN=ND,BE=EF=FC,四边形ABEM,MEFN,NFCD的面积分别记为S 1 ,S 2 和S 3 ,则
|
S 2 |
S 1 + S 3 |
S 2 |
S 1 + S 3 |
S 2 |
S 1 + S 3 |
S 2 |
S 1 + S 3 |
S 2 |
S 1 + S 3 |
S 2 |
S 1 + S 3 |
▼优质解答
答案和解析
如图3a,连接AE、EN和NC,易知
由S △AEM =S △MEN ,S △CNF =S △EFN ,
上面两个式子相加得S △AEM +S △CNF =S 2 (1)
并且四边形AECN的面积=2S 2 .
连接AC,如图3b,由三角形面积公式,
易知 S △ABE =
S △AEC , S △CDN =
S △CNA
上面两个式子相加得 S △ABE + S △CDN =
四边形AECN的面积=S 2 (2)
将(1)式和(2)相加,
得到S △AEM +S △CNF +S △ABE +S △CDN =2S 2 ,
既然S △AEM +S △ABE =S 1 ,S △CNF +S △ABE =S 3
因此S 1 +S 3 =2S 2 ,
=
.
答:
=
.
如图3a,连接AE、EN和NC,易知
由S △AEM =S △MEN ,S △CNF =S △EFN ,
上面两个式子相加得S △AEM +S △CNF =S 2 (1)
并且四边形AECN的面积=2S 2 .
连接AC,如图3b,由三角形面积公式,
易知 S △ABE =
S △AEC , S △CDN =
S △CNA
上面两个式子相加得 S △ABE + S △CDN =
四边形AECN的面积=S 2 (2)
将(1)式和(2)相加,
得到S △AEM +S △CNF +S △ABE +S △CDN =2S 2 ,
既然S △AEM +S △ABE =S 1 ,S △CNF +S △ABE =S 3
因此S 1 +S 3 =2S 2 ,
=
.
答:
=
.
如图3a,连接AE、EN和NC,易知
由S △AEM =S △MEN ,S △CNF =S △EFN ,
上面两个式子相加得S △AEM +S △CNF =S 2 (1)
并且四边形AECN的面积=2S 2 .
连接AC,如图3b,由三角形面积公式,
易知 S △ABE =
S △AEC , S △CDN =
S △CNA
上面两个式子相加得 S △ABE + S △CDN =
四边形AECN的面积=S 2 (2)
将(1)式和(2)相加,
得到S △AEM +S △CNF +S △ABE +S △CDN =2S 2 ,
既然S △AEM +S △ABE =S 1 ,S △CNF +S △ABE =S 3
因此S 1 +S 3 =2S 2 ,
=
.
答:
=
.
如图3a,连接AE、EN和NC,易知
由S △AEM △AEM =S △MEN △MEN ,S △CNF △CNF =S △EFN △EFN ,
上面两个式子相加得S △AEM △AEM +S △CNF △CNF =S 2 2 (1)
并且四边形AECN的面积=2S 2 2 .
连接AC,如图3b,由三角形面积公式,
易知 S △ABE =
S △AEC , S △CDN =
S △CNA
上面两个式子相加得 S △ABE + S △CDN =
四边形AECN的面积=S 2 (2)
将(1)式和(2)相加,
得到S △AEM +S △CNF +S △ABE +S △CDN =2S 2 ,
既然S △AEM +S △ABE =S 1 ,S △CNF +S △ABE =S 3
因此S 1 +S 3 =2S 2 ,
=
.
答:
=
. S △ABE =
S △AEC , S △CDN =
S △CNA
上面两个式子相加得 S △ABE + S △CDN =
四边形AECN的面积=S 2 (2)
将(1)式和(2)相加,
得到S △AEM +S △CNF +S △ABE +S △CDN =2S 2 ,
既然S △AEM +S △ABE =S 1 ,S △CNF +S △ABE =S 3
因此S 1 +S 3 =2S 2 ,
=
.
答:
=
. △ABE =
1 2 1 1 1 2 2 2 S △AEC , S △CDN =
S △CNA
上面两个式子相加得 S △ABE + S △CDN =
四边形AECN的面积=S 2 (2)
将(1)式和(2)相加,
得到S △AEM +S △CNF +S △ABE +S △CDN =2S 2 ,
既然S △AEM +S △ABE =S 1 ,S △CNF +S △ABE =S 3
因此S 1 +S 3 =2S 2 ,
=
.
答:
=
. △AEC , S △CDN =
S △CNA
上面两个式子相加得 S △ABE + S △CDN =
四边形AECN的面积=S 2 (2)
将(1)式和(2)相加,
得到S △AEM +S △CNF +S △ABE +S △CDN =2S 2 ,
既然S △AEM +S △ABE =S 1 ,S △CNF +S △ABE =S 3
因此S 1 +S 3 =2S 2 ,
=
.
答:
=
. S △CDN =
S △CNA
上面两个式子相加得 S △ABE + S △CDN =
四边形AECN的面积=S 2 (2)
将(1)式和(2)相加,
得到S △AEM +S △CNF +S △ABE +S △CDN =2S 2 ,
既然S △AEM +S △ABE =S 1 ,S △CNF +S △ABE =S 3
因此S 1 +S 3 =2S 2 ,
=
.
答:
=
. △CDN =
1 2 1 1 1 2 2 2 S △CNA
上面两个式子相加得 S △ABE + S △CDN =
四边形AECN的面积=S 2 (2)
将(1)式和(2)相加,
得到S △AEM +S △CNF +S △ABE +S △CDN =2S 2 ,
既然S △AEM +S △ABE =S 1 ,S △CNF +S △ABE =S 3
因此S 1 +S 3 =2S 2 ,
=
.
答:
=
. △CNA
上面两个式子相加得 S △ABE + S △CDN =
四边形AECN的面积=S 2 (2)
将(1)式和(2)相加,
得到S △AEM +S △CNF +S △ABE +S △CDN =2S 2 ,
既然S △AEM +S △ABE =S 1 ,S △CNF +S △ABE =S 3
因此S 1 +S 3 =2S 2 ,
=
.
答:
=
. S △ABE + S △CDN =
四边形AECN的面积=S 2 (2)
将(1)式和(2)相加,
得到S △AEM +S △CNF +S △ABE +S △CDN =2S 2 ,
既然S △AEM +S △ABE =S 1 ,S △CNF +S △ABE =S 3
因此S 1 +S 3 =2S 2 ,
=
.
答:
=
. △ABE + S △CDN =
四边形AECN的面积=S 2 (2)
将(1)式和(2)相加,
得到S △AEM +S △CNF +S △ABE +S △CDN =2S 2 ,
既然S △AEM +S △ABE =S 1 ,S △CNF +S △ABE =S 3
因此S 1 +S 3 =2S 2 ,
=
.
答:
=
. △CDN =
1 2 1 1 1 2 2 2
四边形AECN的面积=S 2 2 (2)
将(1)式和(2)相加,
得到S △AEM △AEM +S △CNF △CNF +S △ABE △ABE +S △CDN △CDN =2S 2 2 ,
既然S △AEM △AEM +S △ABE △ABE =S 1 1 ,S △CNF △CNF +S △ABE △ABE =S 3 3
因此S 1 1 +S 3 3 =2S 2 2 ,
=
.
答:
=
.
S 2 S 1 + S 3 S 2 S 2 S 2 2 S 1 + S 3 S 1 + S 3 S 1 + S 3 1 + S 3 3 =
1 2 1 1 1 2 2 2 .
答:
=
.
S 2 S 1 + S 3 S 2 S 2 S 2 2 S 1 + S 3 S 1 + S 3 S 1 + S 3 1 + S 3 3 =
1 2 1 1 1 2 2 2 .
如图3a,连接AE、EN和NC,易知 由S △AEM =S △MEN ,S △CNF =S △EFN , 上面两个式子相加得S △AEM +S △CNF =S 2 (1) 并且四边形AECN的面积=2S 2 . 连接AC,如图3b,由三角形面积公式, 易知 S △ABE =
上面两个式子相加得 S △ABE + S △CDN =
四边形AECN的面积=S 2 (2) 将(1)式和(2)相加, 得到S △AEM +S △CNF +S △ABE +S △CDN =2S 2 , 既然S △AEM +S △ABE =S 1 ,S △CNF +S △ABE =S 3 因此S 1 +S 3 =2S 2 ,
答:
|
如图3a,连接AE、EN和NC,易知
由S △AEM =S △MEN ,S △CNF =S △EFN ,
上面两个式子相加得S △AEM +S △CNF =S 2 (1)
并且四边形AECN的面积=2S 2 .
连接AC,如图3b,由三角形面积公式,
易知 S △ABE =
1 |
2 |
1 |
2 |
上面两个式子相加得 S △ABE + S △CDN =
1 |
2 |
四边形AECN的面积=S 2 (2)
将(1)式和(2)相加,
得到S △AEM +S △CNF +S △ABE +S △CDN =2S 2 ,
既然S △AEM +S △ABE =S 1 ,S △CNF +S △ABE =S 3
因此S 1 +S 3 =2S 2 ,
S 2 |
S 1 + S 3 |
1 |
2 |
答:
S 2 |
S 1 + S 3 |
1 |
2 |
如图3a,连接AE、EN和NC,易知
由S △AEM =S △MEN ,S △CNF =S △EFN ,
上面两个式子相加得S △AEM +S △CNF =S 2 (1)
并且四边形AECN的面积=2S 2 .
连接AC,如图3b,由三角形面积公式,
易知 S △ABE =
1 |
2 |
1 |
2 |
上面两个式子相加得 S △ABE + S △CDN =
1 |
2 |
四边形AECN的面积=S 2 (2)
将(1)式和(2)相加,
得到S △AEM +S △CNF +S △ABE +S △CDN =2S 2 ,
既然S △AEM +S △ABE =S 1 ,S △CNF +S △ABE =S 3
因此S 1 +S 3 =2S 2 ,
S 2 |
S 1 + S 3 |
1 |
2 |
答:
S 2 |
S 1 + S 3 |
1 |
2 |
如图3a,连接AE、EN和NC,易知
由S △AEM =S △MEN ,S △CNF =S △EFN ,
上面两个式子相加得S △AEM +S △CNF =S 2 (1)
并且四边形AECN的面积=2S 2 .
连接AC,如图3b,由三角形面积公式,
易知 S △ABE =
1 |
2 |
1 |
2 |
上面两个式子相加得 S △ABE + S △CDN =
1 |
2 |
四边形AECN的面积=S 2 (2)
将(1)式和(2)相加,
得到S △AEM +S △CNF +S △ABE +S △CDN =2S 2 ,
既然S △AEM +S △ABE =S 1 ,S △CNF +S △ABE =S 3
因此S 1 +S 3 =2S 2 ,
S 2 |
S 1 + S 3 |
1 |
2 |
答:
S 2 |
S 1 + S 3 |
1 |
2 |
如图3a,连接AE、EN和NC,易知
由S △AEM △AEM =S △MEN △MEN ,S △CNF △CNF =S △EFN △EFN ,
上面两个式子相加得S △AEM △AEM +S △CNF △CNF =S 2 2 (1)
并且四边形AECN的面积=2S 2 2 .
连接AC,如图3b,由三角形面积公式,
易知 S △ABE =
1 |
2 |
1 |
2 |
上面两个式子相加得 S △ABE + S △CDN =
1 |
2 |
四边形AECN的面积=S 2 (2)
将(1)式和(2)相加,
得到S △AEM +S △CNF +S △ABE +S △CDN =2S 2 ,
既然S △AEM +S △ABE =S 1 ,S △CNF +S △ABE =S 3
因此S 1 +S 3 =2S 2 ,
S 2 |
S 1 + S 3 |
1 |
2 |
答:
S 2 |
S 1 + S 3 |
1 |
2 |
1 |
2 |
1 |
2 |
上面两个式子相加得 S △ABE + S △CDN =
1 |
2 |
四边形AECN的面积=S 2 (2)
将(1)式和(2)相加,
得到S △AEM +S △CNF +S △ABE +S △CDN =2S 2 ,
既然S △AEM +S △ABE =S 1 ,S △CNF +S △ABE =S 3
因此S 1 +S 3 =2S 2 ,
S 2 |
S 1 + S 3 |
1 |
2 |
答:
S 2 |
S 1 + S 3 |
1 |
2 |
1 |
2 |
1 |
2 |
上面两个式子相加得 S △ABE + S △CDN =
1 |
2 |
四边形AECN的面积=S 2 (2)
将(1)式和(2)相加,
得到S △AEM +S △CNF +S △ABE +S △CDN =2S 2 ,
既然S △AEM +S △ABE =S 1 ,S △CNF +S △ABE =S 3
因此S 1 +S 3 =2S 2 ,
S 2 |
S 1 + S 3 |
1 |
2 |
答:
S 2 |
S 1 + S 3 |
1 |
2 |
1 |
2 |
上面两个式子相加得 S △ABE + S △CDN =
1 |
2 |
四边形AECN的面积=S 2 (2)
将(1)式和(2)相加,
得到S △AEM +S △CNF +S △ABE +S △CDN =2S 2 ,
既然S △AEM +S △ABE =S 1 ,S △CNF +S △ABE =S 3
因此S 1 +S 3 =2S 2 ,
S 2 |
S 1 + S 3 |
1 |
2 |
答:
S 2 |
S 1 + S 3 |
1 |
2 |
1 |
2 |
上面两个式子相加得 S △ABE + S △CDN =
1 |
2 |
四边形AECN的面积=S 2 (2)
将(1)式和(2)相加,
得到S △AEM +S △CNF +S △ABE +S △CDN =2S 2 ,
既然S △AEM +S △ABE =S 1 ,S △CNF +S △ABE =S 3
因此S 1 +S 3 =2S 2 ,
S 2 |
S 1 + S 3 |
1 |
2 |
答:
S 2 |
S 1 + S 3 |
1 |
2 |
1 |
2 |
上面两个式子相加得 S △ABE + S △CDN =
1 |
2 |
四边形AECN的面积=S 2 (2)
将(1)式和(2)相加,
得到S △AEM +S △CNF +S △ABE +S △CDN =2S 2 ,
既然S △AEM +S △ABE =S 1 ,S △CNF +S △ABE =S 3
因此S 1 +S 3 =2S 2 ,
S 2 |
S 1 + S 3 |
1 |
2 |
答:
S 2 |
S 1 + S 3 |
1 |
2 |
上面两个式子相加得 S △ABE + S △CDN =
1 |
2 |
四边形AECN的面积=S 2 (2)
将(1)式和(2)相加,
得到S △AEM +S △CNF +S △ABE +S △CDN =2S 2 ,
既然S △AEM +S △ABE =S 1 ,S △CNF +S △ABE =S 3
因此S 1 +S 3 =2S 2 ,
S 2 |
S 1 + S 3 |
1 |
2 |
答:
S 2 |
S 1 + S 3 |
1 |
2 |
1 |
2 |
四边形AECN的面积=S 2 (2)
将(1)式和(2)相加,
得到S △AEM +S △CNF +S △ABE +S △CDN =2S 2 ,
既然S △AEM +S △ABE =S 1 ,S △CNF +S △ABE =S 3
因此S 1 +S 3 =2S 2 ,
S 2 |
S 1 + S 3 |
1 |
2 |
答:
S 2 |
S 1 + S 3 |
1 |
2 |
1 |
2 |
四边形AECN的面积=S 2 (2)
将(1)式和(2)相加,
得到S △AEM +S △CNF +S △ABE +S △CDN =2S 2 ,
既然S △AEM +S △ABE =S 1 ,S △CNF +S △ABE =S 3
因此S 1 +S 3 =2S 2 ,
S 2 |
S 1 + S 3 |
1 |
2 |
答:
S 2 |
S 1 + S 3 |
1 |
2 |
1 |
2 |
四边形AECN的面积=S 2 2 (2)
将(1)式和(2)相加,
得到S △AEM △AEM +S △CNF △CNF +S △ABE △ABE +S △CDN △CDN =2S 2 2 ,
既然S △AEM △AEM +S △ABE △ABE =S 1 1 ,S △CNF △CNF +S △ABE △ABE =S 3 3
因此S 1 1 +S 3 3 =2S 2 2 ,
S 2 |
S 1 + S 3 |
1 |
2 |
答:
S 2 |
S 1 + S 3 |
1 |
2 |
S 2 |
S 1 + S 3 |
1 |
2 |
答:
S 2 |
S 1 + S 3 |
1 |
2 |
S 2 |
S 1 + S 3 |
1 |
2 |
看了 如图所示,在四边形ABCD中...的网友还看了以下:
已知函数f(x)对于任意s,t属于R都有f(s+t)-f(t)=(s+2t+1)s,且f(1)=0( 2020-03-31 …
f(x)+f(y)=2f[(x+y)/2]f[(x-y)/2],f(0)不等于,且存在非零常数c, 2020-05-14 …
为什么我觉得斜面上摩擦力做的功(额外功)和拉力做的功(总功)是相等的?例如一个斜面有个物体.被匀速 2020-05-16 …
下述定义变量正确的是( )。A.XDW'ASDF'B.XDB'A','S','D','F'C.XDD 2020-05-24 …
下述定义变量正确的是( )。A.X DW 'ASDF'B.X DB 'A','S','D','F'C 2020-05-24 …
已知函数y=f(x)在t=0处可导,且具有性质f(t+s)=(f(t)+f(s))/(1-f(t) 2020-06-08 …
已知A等于{a,b,c},B等于{-1,0,1},f是A到的映射,则满足f(a)+f(b)+f(c 2020-06-23 …
对任意的正数s,t,有下列4个关系式:①f(s+t)=f(s)+f(t);②f(s+t)=f(s) 2020-07-20 …
多选填空题.给定集合A={1,2,3},定义A上的等价关系如下:S={,,,,}等价关系S中含有等 2020-08-02 …
设a,b,c为实数,f(x)=(x+a)(x2+bx+c),g(x)=(ax+1)(cx2+bx+1 2020-11-18 …