早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,在梯形ABCD中,AD∥BC,AB=DC=8,∠B=60°,BC=12,连接AC.(1)求tan∠ACB的值;(2)若M、N分别是AB、DC的中点,连接MN,求线段MN的长.

题目详情



▼优质解答
答案和解析
(1)如图,作AE⊥BC于点E.
在Rt△ABE中,
BE=AB•cosB=8×cos60°=4,
AE=AB•sinB=8×sin60°=4
3

∴CE=BC-BE=12-4=8.
在Rt△ACE中,
tan∠ACB=
AE
EC
4
3
8
3
2

(2)作DF⊥BC于F,则四边形AEFD是矩形.
∴AD=EF,DF=AE.
∵AB=DC,∠AEB=∠DFC=90°,
∴Rt△ABE≌Rt△DCF(HL)
∴CF=BE=4,
EF=BC-BE-CF=12-4-4=4,
∴AD=4.
又∵M、N分别是AB、DC的中点,
∴MN是梯形ABCD的中位线,
∴MN=
1
2
(AD+BC)=
1
2
(4+12)=8.
3
3
33,
∴CE=BC-BE=12-4=8.
在Rt△ACE中,
tan∠ACB=
AE
EC
4
3
8
3
2

(2)作DF⊥BC于F,则四边形AEFD是矩形.
∴AD=EF,DF=AE.
∵AB=DC,∠AEB=∠DFC=90°,
∴Rt△ABE≌Rt△DCF(HL)
∴CF=BE=4,
EF=BC-BE-CF=12-4-4=4,
∴AD=4.
又∵M、N分别是AB、DC的中点,
∴MN是梯形ABCD的中位线,
∴MN=
1
2
(AD+BC)=
1
2
(4+12)=8.
AE
EC
AEAEAEECECEC=
4
3
8
4
3
4
3
4
3
3
33888=
3
2
3
3
3
3
33222.
(2)作DF⊥BC于F,则四边形AEFD是矩形.
∴AD=EF,DF=AE.
∵AB=DC,∠AEB=∠DFC=90°,
∴Rt△ABE≌Rt△DCF(HL)
∴CF=BE=4,
EF=BC-BE-CF=12-4-4=4,
∴AD=4.
又∵M、N分别是AB、DC的中点,
∴MN是梯形ABCD的中位线,
∴MN=
1
2
(AD+BC)=
1
2
(4+12)=8.
1
2
111222(AD+BC)=
1
2
(4+12)=8.
1
2
111222(4+12)=8.