早教吧作业答案频道 -->数学-->
单纯形法求解maxz=4X1+3X2+6X3S.T.3X1+X2+3X3≤30;2X1+2X2+3X3≤40;X1,X2,X3≥0
题目详情
单纯形法求解 max z =4X1+3X2+6X3 S.T.3X1+X2+3X3≤30;2X1+2X2+3X3≤40;X1,X2,X3≥0
▼优质解答
答案和解析
3x1+x2+3x3≤30 (1')
2x1+2x2+3x3≤40 (2')
x1≥0 (3')
x2≥0 (4')
x3≥0 (5')
3x1+x2+3x3=30 (1)
2x1+2x2+3x3=40 (2)
x1=0 (3)
x2=0 (4)
x3=0 (5)
case 1:
from (1) ,(2), (3), x1=0
x2 +3x3=30
2x2+3x3=40
x2 =10, x3= 20/3
satisfy (4') and (5')
(x1,x2,x3) = (0,10, 20/3)
z =4x1+3x2+6x3
=30+40
=70
case 2:
from (1) ,(2), (4), x2=0
3x1+3x3=30
2x1+3x3=40
x1 =-10, does not satisfy (3')
rejected case 2
case 3:
from (1) ,(2), (5), x3=0
3x1+x2=30
2x1+2x2=40
x1=5, x2=15
satisfy (3') and (4')
(x1,x2,x3) = (5,15, 0)
z =4x1+3x2+6x3
=20+45
=65
case 4:
from (1) ,(3), (4), x1=x2=0
3x1+x2+3x3=30
x3=10
2x1+2x2+3x3≤40 (2')
satisfy (2') and (5')
(x1,x2,x3) = (0,0, 10)
z =4x1+3x2+6x3
=60
case 5:
from (1) ,(3), (5), x1=x3=0
3x1+x2+3x3=30
x2=30
2x1+2x2+3x3≤40 (2')
does not satisfy (2')
rejected case 5
case 6:
from (1) ,(4), (5), x2=x3=0
3x1+x2+3x3=30
x1=10
2x1+2x2+3x3≤40 (2')
satisfy (2') and (3')
(x1,x2,x3) = (10,0, 0)
z =4x1+3x2+6x3
=40
case 7:
from (2) ,(3), (4), x1=x2=0
2x1+2x2+3x3=40
x3=40/3
3x1+x2+3x3≤30 (1')
does not satisfy (1')
rejected case 7
case 8:
from (2) ,(3), (5), x1=x3=0
2x1+2x2+3x3=40
x2=20
3x1+x2+3x3≤30 (1')
satisfy (1') and (4')
(x1,x2,x3) = ( 0,20,0)
z =4x1+3x2+6x3
=60
case 9:
from (2) ,(4), (5), x2=x3=0
2x1+2x2+3x3=40
x1=20
3x1+x2+3x3≤30 (1')
does not satisfy (1')
rejected case 9
ie max z = case 1=70
2x1+2x2+3x3≤40 (2')
x1≥0 (3')
x2≥0 (4')
x3≥0 (5')
3x1+x2+3x3=30 (1)
2x1+2x2+3x3=40 (2)
x1=0 (3)
x2=0 (4)
x3=0 (5)
case 1:
from (1) ,(2), (3), x1=0
x2 +3x3=30
2x2+3x3=40
x2 =10, x3= 20/3
satisfy (4') and (5')
(x1,x2,x3) = (0,10, 20/3)
z =4x1+3x2+6x3
=30+40
=70
case 2:
from (1) ,(2), (4), x2=0
3x1+3x3=30
2x1+3x3=40
x1 =-10, does not satisfy (3')
rejected case 2
case 3:
from (1) ,(2), (5), x3=0
3x1+x2=30
2x1+2x2=40
x1=5, x2=15
satisfy (3') and (4')
(x1,x2,x3) = (5,15, 0)
z =4x1+3x2+6x3
=20+45
=65
case 4:
from (1) ,(3), (4), x1=x2=0
3x1+x2+3x3=30
x3=10
2x1+2x2+3x3≤40 (2')
satisfy (2') and (5')
(x1,x2,x3) = (0,0, 10)
z =4x1+3x2+6x3
=60
case 5:
from (1) ,(3), (5), x1=x3=0
3x1+x2+3x3=30
x2=30
2x1+2x2+3x3≤40 (2')
does not satisfy (2')
rejected case 5
case 6:
from (1) ,(4), (5), x2=x3=0
3x1+x2+3x3=30
x1=10
2x1+2x2+3x3≤40 (2')
satisfy (2') and (3')
(x1,x2,x3) = (10,0, 0)
z =4x1+3x2+6x3
=40
case 7:
from (2) ,(3), (4), x1=x2=0
2x1+2x2+3x3=40
x3=40/3
3x1+x2+3x3≤30 (1')
does not satisfy (1')
rejected case 7
case 8:
from (2) ,(3), (5), x1=x3=0
2x1+2x2+3x3=40
x2=20
3x1+x2+3x3≤30 (1')
satisfy (1') and (4')
(x1,x2,x3) = ( 0,20,0)
z =4x1+3x2+6x3
=60
case 9:
from (2) ,(4), (5), x2=x3=0
2x1+2x2+3x3=40
x1=20
3x1+x2+3x3≤30 (1')
does not satisfy (1')
rejected case 9
ie max z = case 1=70
看了 单纯形法求解maxz=4X1...的网友还看了以下:
方括号代表根号(1)[12]+3[4/3]-2/3[48]-[16/3](2)先化简,再求值:(x 2020-04-27 …
解方程:(X2+2)/(2X2-1)-3(2X2-1)/(X2+2)+2=0 3x2+15x+2根 2020-05-16 …
小颖解一元二次方程x^2-4x+1=0,得方程的两个根是x1=2-√3,x2=3+√3小亮看了一眼 2020-05-16 …
从图1到图2的拼图过程中,所反映的关系式是()A.x2+5x+6=(x+2)(x+3)B.x2+5 2020-05-17 …
1.直接写得数1/2+1/31/2+1/41/3+1/51/4+2/31/3+3/51/6+2/7 2020-06-13 …
不等式问题x,y,z∈R+,且x+y+z=z.试证明x,y,z∈R+,且x+y+z=z.试证明:对 2020-06-14 …
观察各式3*1=3,3*3=9,3*3*3=27,3*3*3*3=81...观察各式3*1=3,3 2020-07-19 …
Tn=3×3+5×3^2+7×3^3+.+(2n-1)×3^n-1+(2n+1)×3^n(3^2表 2020-07-29 …
对于算式2*(3+1)*(3*3+1)*(3*3*3*3+1)*(3*3*3*3*3*3*3*3+ 2020-07-30 …
计算下列各题:(1)-20+(-14)-(-18)-13(2)-32-[22÷(-1)-13]×(- 2020-10-31 …