早教吧 育儿知识 作业答案 考试题库 百科 知识分享

当0°<α<60°时,下列关系式中有且仅有一个正确.A.B.C.(1)正确的选项是;(2)如图1,△ABC中,AC=1,∠B=30°,∠A=α,请利用此图证明(1)中的结论;(3)两块分别含45°和30°的直

题目详情
当0°<α<60°时,下列关系式中有且仅有一个正确.
A.
B.
C.
(1)正确的选项是______;
(2)如图1,△ABC中,AC=1,∠B=30°,∠A=α,请利用此图证明(1)中的结论;
(3)两块分别含45°和30°的直角三角板如图2方式放置在同一平面内,BD=,求S△ADC

▼优质解答
答案和解析
(1)利用关系式sin(α+β)=sinα•cosβ+cosα•sinβ即可解答.
(2)构造直角三角形,过A、C点作AD⊥BC交BC的延长线于点D,CE⊥AB于E,根据三角函数知识,可用α表示出AB的长度,再表示出AE和BE的长度,AB=AE+BE,分别让带有α两式相等即可.
(3)要求三角形的面积,必须找到三角形的一边和这条边上的高;过点A作AG⊥CD交CD的延长线于G点.根据题意可知CD和AD的长度,和∠ADG的度数,根据上述得出的结论,可以求出∠的正弦值,在直角三角形ADG中,AD已知,根据三角函数关系式即可得出AG的长度,代入S△ADC的面积公式即可.
【解析】
(1)C.
2sin(α+30°)=2(sinα•cos30°+cosα•sin30°)=
故答案选C.
(2)如图,过点A作AD⊥BC交BC的延长线于点D.
∵∠B=30°,∠BAC=α,AC=1,
∴∠ACD=α+30°.
∴在△ADC中,∠ADC=90°,AD=AC•sin∠ACD=sin(α+30°).
∵在△ABD中,∠ADB=90°,∠B=30°,
∴AB=2AD=2sin(α+30°)
过点C作CE⊥AB于E.
∴在△CEA中,∠AEC=90°,CE=sinα,AE=cosα.
在△BEC中,∠BEC=90°,


(3)由上面证明的等式易得
如图,过点A作AG⊥CD交CD的延长线于点G.
∵△ABD和△BCD是两个含45°和30°的直角三角形,BD=
∴∠ADG=75°,AD=8,
∵sin75°=sin(45°+30°)==
∴在△ADG中,∠AGD=90°,
∴S△ADC===