早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图:在△ABC中,∠ACB=90°,AC=BC,∠PCQ=45°,把∠PCQ绕点C旋转,在整个旋转过程中,过点A作AD⊥CP,垂足为D,直线AD交CQ于E.(1)如图①,当∠PCQ在∠ACB内部时,求证:AD+BE=DE;(2)如图②

题目详情
如图:在△ABC中,∠ACB=90°,AC=BC,∠PCQ=45°,把∠PCQ绕点C旋转,在整个旋转过程中,过点A作AD⊥CP,垂足为D,直线AD交CQ于E.

(1)如图①,当∠PCQ在∠ACB内部时,求证:AD+BE=DE;
(2)如图②,当CQ在∠ACB外部时,则线段AD、BE与DE的关系为______;
(3)在(1)的条件下,若CD=6,S△BCE=2S△ACD,求AE的长.
▼优质解答
答案和解析
(1)证明:如图①,延长DA到F,使DF=DE,
∵CD⊥AE,
∴CE=CF,
∴∠DCE=∠DCF=∠PCQ=45°,
∴∠ACD+∠ACF=∠DCF=45°,
又∵∠ACB=90°,∠PCQ=45°,
∴∠ACD+∠BCE=90°-45°=45°,
∴∠ACF=∠BCE,
∵在△ACF和△BCE中,
CE=CF
∠ACF=∠BCE
AC=BC

∴△ACF≌△BCE(SAS),
∴AF=BE,
∴AD+BE=AD+AF=DF=DE,
即AD+BE=DE;
(2)如图②,在AD上截取DF=DE,
∵CD⊥AE,
∴CE=CF,
∴∠DCE=∠DCF=∠PCQ=45°,
∴∠ECF=∠DCE+∠DCF=90°,
∴∠BCE+∠BCF=∠ECF=90°,
又∵∠ACB=90°,
∴∠ACF+∠BCF=90°,
∴∠ACF=∠BCE,
∵在△ACF和△BCE中,
CE=CF
∠ACF=∠BCE
AC=BC

∴△ACF≌△BCE(SAS),
∴AF=BE,
∴AD=AF+DF=BE+DE,
即AD=BE+DE;
故答案为:AD=BE+DE.
(3)∵∠DCE=∠DCF=∠PCQ=45°,
∴∠ECF=45°+45°=90°,
∴△ECF是等腰直角三角形,
∴CD=DF=DE=6,
∵S△BCE=2S△ACD
∴AF=2AD,
∴AD=
1
1+2
×6=2,
∴AE=AD+DE=2+6=8.