早教吧作业答案频道 -->数学-->
初等数论同余问题的题目说明2^(2^5)+1是否能被641整除求(257^33+46)^26被50除的余数求n=7^(7^7)的个位数
题目详情
初等数论同余问题的题目
说明 2^(2^5)+1 是否能被641整除
求(257^33 +46 )^26 被50除的余数
求 n=7^(7^7) 的个位数
说明 2^(2^5)+1 是否能被641整除
求(257^33 +46 )^26 被50除的余数
求 n=7^(7^7) 的个位数
▼优质解答
答案和解析
(1)说明 2^(2^5)+1 是否能被641整除
2^(2^5)+1 能被641整除
即2^32+1==0mod641,参见
只须证2^(2^5)==2^32==-1 mod 641.
(以下记ax==b mod m为x==b/a mod m,这是洪伯阳记法,很好用)
2^6=64==-1/10 mod 641,故2^7==-1/5,(2^7)^4==1/625==-1/16,从而2^32==-1.毕.
写成一般的形式:
2^6=64mod 641,故5*2^7==640==-1,1==(5*2^7)^4==(625)*2^28==-16*2^28=-2^32,从而2^32==-1.毕.
(2)求(257^33 +46 )^26 被50除的余数
φ(50)=20.故所求==(7^13-4)^6==(7*49^6-4)^6==3^6=729==29
(3)求 n=7^(7^7) 的个位数
φ(10)=4.
7^7 mod 4==(-1)^7==-1==3
n mod 10==7^3 mod 10==3
2^(2^5)+1 能被641整除
即2^32+1==0mod641,参见
只须证2^(2^5)==2^32==-1 mod 641.
(以下记ax==b mod m为x==b/a mod m,这是洪伯阳记法,很好用)
2^6=64==-1/10 mod 641,故2^7==-1/5,(2^7)^4==1/625==-1/16,从而2^32==-1.毕.
写成一般的形式:
2^6=64mod 641,故5*2^7==640==-1,1==(5*2^7)^4==(625)*2^28==-16*2^28=-2^32,从而2^32==-1.毕.
(2)求(257^33 +46 )^26 被50除的余数
φ(50)=20.故所求==(7^13-4)^6==(7*49^6-4)^6==3^6=729==29
(3)求 n=7^(7^7) 的个位数
φ(10)=4.
7^7 mod 4==(-1)^7==-1==3
n mod 10==7^3 mod 10==3
看了 初等数论同余问题的题目说明2...的网友还看了以下:
命题“如果实数x能被2整除,则x是偶数”的否命题是()A.如果实数x不能被2整除,则x是偶数B.如 2020-04-09 …
甲数是乙数的5分之4,甲数比乙数少百分之【 】,乙数比甲数多百分之【 】甲数比乙数少5分之1,即甲 2020-05-16 …
争需求剩余定理的解法一个数被3除余1,被4除余2,被5除余4,这个数最小是几?答案里写的是:关键求 2020-06-02 …
1到3000之间去掉4和7的所有数的个数?每一位数不能带4或7例:4,7,17,78,700,41 2020-06-12 …
1.有一个有趣的三位数.这个数减去3能被3整除,减去5能被5整出,减去9能被9整除.这个三位数最大 2020-07-09 …
判断一个数能被2除尽,这个数是偶数.对好是错一个数能被6整除,这个数就一定能被2和3整除能被3整除 2020-07-13 …
3道填空-|||①负数的相反数是正数,把这句话用符号可以表示为()②下列说法中,正确的是().A、无 2020-10-30 …
甲数是乙数的4/5,甲数是丙数的4/9,甲,乙,丙三数的比是():():()甲数是乙数的4/5.甲数 2020-11-20 …
最简二次根式特点的依据为什么被开方数不能含有分母,也就是为什么被开方的因数是整数,因式是整式?还有为 2020-12-05 …
数列概念问题数列a(n+1)-a(n)=常数这个数列是指a(n)是以这个常数为公差的等差数列还是是指 2020-12-26 …