早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知X1+X2+X3……+x40都是正整数,且X1+X2+X3……+X40=58若X12+X22+X32+……+X402的设x1,x2,x3,…,x40是正整数,且x1+x2+x3+…+x40=58,则x12+x22+x32+…+x402的最大值和最小值为()

题目详情
已知X1+X2+X3……+x40都是正整数,且X1+X2+X3……+X40=58若X12+X22+X32+……+X402的
设x1,x2,x3,…,x40是正整数,且x1+x2+x3+…+x40=58,则x12+x22+x32+…+x402的最大值和最小值为(  )
▼优质解答
答案和解析
把58分写成40个正整数和的写法只有有限种,x12+x22+x32+…+x402的最大值和最小值是存在的.
①设x1≤x2≤…≤x40,由(x1-1)2+(x2+1)2>x12+x22,所以,当x1>1时,把x1调到1,这时,x12+x22+…+x402将增大,所以可以求出最大值.②若存在两数xi,xj,使得xj-xi≥2(1≤i<j≤40),根据(xi+1)2+(xj-1)2=xi2+xj2-2(xi-xj-1)<x12+x22,所以在x1,x2,x3,…,x40中,若两数差大于1,则较小数加1,较大数减1,这时,x12+x22+x32+…+x402将减小,可以求出最小值.
把58分写成40个正整数和的写法只有有限种,x12+x22+…+x402的最大值和最小值是存在的.
不妨设x1≤x2≤…≤x40,若x1>1,则x1+x2=(x1-1)+(x2+1),且
(x1-1)2+(x2+1)2=x12+x22+2(x2-x1)+2>x12+x22
所以,当x1>1时,把x1调到1,这时,x12+x22+x32+…+x402将增大;
同样,可把x2,x3…x39逐步调至1,这时,x12+x22+x32+…+x402将增大,于是,当x1,x2…x39均为1,x40=19时,x12+x22+x32+…+x402将取最大值,即
A=1×39+192=400.
若存在两数xi,xj,使得xj-xi≥2(1≤i<j≤40),则
(xi+1)2+(xj-1)2=xi2+xj2-2(xi-xj-1)<x12+x22
所以在x1,x2,x3,…,x40中,若两数差大于1,则较小数加1,较大数减1,这时,
x12+x22+x32+…+x402将减小
所以当有22个是1,18个是2时x12+x22+x32+…+x402将取最小值,即
B=1×22+22×18=94
故最大值为400,最小值为94.