早教吧作业答案频道 -->其他-->
以△ABC的两边AB、AC为腰分别向外作等腰Rt△ABD和等腰Rt△ACE,∠BAD=∠CAE=90°,连接DE,M、N分别是BC、DE的中点.探究:AM与DE的位置关系及数量关系.(1)如图①当△ABC为直角三角形时,AM与DE
题目详情
以△ABC的两边AB、AC为腰分别向外作等腰Rt△ABD和等腰Rt△ACE,∠BAD=∠CAE=90°,连接DE,M、N分别是BC、DE的中点.探究:AM与DE的位置关系及数量关系.
(1)如图①当△ABC为直角三角形时,AM与DE的位置关系是______,线段AM与DE的数量关系是______;
(2)将图①中的等腰Rt△ABD绕点A沿逆时针方向旋转θ°(0<θ<90)后,如图②所示,(1)问中得到的两个结论是否发生改变?并说明理由.
(1)如图①当△ABC为直角三角形时,AM与DE的位置关系是______,线段AM与DE的数量关系是______;
(2)将图①中的等腰Rt△ABD绕点A沿逆时针方向旋转θ°(0<θ<90)后,如图②所示,(1)问中得到的两个结论是否发生改变?并说明理由.
▼优质解答
答案和解析
(1)ED=2AM,AM⊥ED;
证明:延长AM到G,使MG=AM,连BG,则ABGC是平行四边形,再延长MA交DE于H.
∴AC=BG,∠ABG+∠BAC=180°
又∵∠DAE+∠BAC=180°,
∴∠ABG=∠DAE.
再证:△DAE≌△ABG
∴DE=2AM,∠BAG=∠EDA.
延长MA交DE于H,
∵∠BAG+∠DAH=90°,
∴∠HDA+∠DAH=90°.
∴AM⊥ED.
(2)结论仍然成立.
证明:如图,延长CA至F,使FA=AC,FA交DE于点P,并连接BF.
∵DA⊥BA,EA⊥AF,
∴∠BAF=90°+∠DAF=∠EAD.
∵在△FAB和△EAD中,
∴△FAB≌△EAD(SAS)
∴BF=DE,∠F=∠AEN,
∴∠FPD+∠F=∠APE+∠AEN=90°.
∴FB⊥DE.
又∵CA=AF,CM=MB.
∴AM∥FB,且AM=
FB,
∴AM⊥DE,AM=
DE.
证明:延长AM到G,使MG=AM,连BG,则ABGC是平行四边形,再延长MA交DE于H.
∴AC=BG,∠ABG+∠BAC=180°
又∵∠DAE+∠BAC=180°,
∴∠ABG=∠DAE.
再证:△DAE≌△ABG
∴DE=2AM,∠BAG=∠EDA.
延长MA交DE于H,
∵∠BAG+∠DAH=90°,
∴∠HDA+∠DAH=90°.
∴AM⊥ED.
(2)结论仍然成立.
证明:如图,延长CA至F,使FA=AC,FA交DE于点P,并连接BF.
∵DA⊥BA,EA⊥AF,
∴∠BAF=90°+∠DAF=∠EAD.
∵在△FAB和△EAD中,
|
∴△FAB≌△EAD(SAS)
∴BF=DE,∠F=∠AEN,
∴∠FPD+∠F=∠APE+∠AEN=90°.
∴FB⊥DE.
又∵CA=AF,CM=MB.
∴AM∥FB,且AM=
1 |
2 |
∴AM⊥DE,AM=
1 |
2 |
看了 以△ABC的两边AB、AC为...的网友还看了以下:
[有机化学基础]存在于茶叶的有机物M,其分子中所含的苯环上有2个取代基,取代基除了Cl原子外不含支 2020-05-02 …
有机物A(C8H16O2)具有兰花香味,可用作香皂、洗发水的芳香赋予剂.已知:①B分子中没有支链. 2020-05-13 …
1、(单选题)Whatabeautifuldressyouhaveontoday!(1分)A、It 2020-05-13 …
4.JungandLeearespace>anovelintheirroom.(2分)A.1ook 2020-05-21 …
2.Tianjinisatwo—hourjourneyBeijing.(2分)A.acrossB. 2020-05-21 …
21点之前回答呀.有分A.B.C.D四个数中,A>B>C>D,且B是奇数.A.B.C的平均数是15 2020-05-23 …
有机物A(C10H20O2)具有兰花香味,可用作香皂、洗发香波的芳香赋予剂.已知:①B分子中没有支 2020-06-27 …
如图是膝跳反射的示意图,请根据你所知道的回答第21~23小题:该反射的神经传导通路的顺序是()A. 2020-06-28 …
如图是膝跳反射的示意图,请根据你所知道的回答第37~40小题:该反射的神经传导通路的顺序是()A. 2020-06-28 …
如图:∠ACD是△ABC的外角,BE平分∠ABC,CE平分∠ACD,且BE、CE交于点E.(1)求 2020-07-15 …