早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图1,在Rt△ACB中,∠BAC=90°,AB=AC,分别过B、C两点作过点A的直线l的垂线,垂足为D、E;(1)如图1,当D、E两点在直线BC的同侧时,猜想,BD、CE、DE三条线段有怎样的数量关系?并说明理由

题目详情
如图1,在Rt△ACB中,∠BAC=90°,AB=AC,分别过B、C两点作过点A的直线l的垂线,垂足为D、E;
作业帮
(1)如图1,当D、E两点在直线BC的同侧时,猜想,BD、CE、DE三条线段有怎样的数量关系?并说明理由.
(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.
(3)如图3,∠BAC=90°,AB=22,AC=28.点P从B点出发沿B→A→C路径向终点C运动;点Q从C点出发沿C→A→B路径向终点B运动.点P和Q分别以每秒2和3个单位的速度同时开始运动,只要有一点到达相应的终点时两点同时停止运动;在运动过程中,分别过P和Q作PF⊥l于F,QG⊥l于G.问:点P运动多少秒时,△PFA与△QAG全等?(直接写出结果即可)
▼优质解答
答案和解析
证明:(1)∵BD⊥直线m,CE⊥直线m,
∴∠BDA=∠CEA=90°,
∵∠BAC=90°,
∴∠BAD+∠CAE=90°,
∵∠BAD+∠ABD=90°,
∴∠CAE=∠ABD,
在△ADB和△CEA中,
∠ABD=∠CAE
∠BDA=∠CEA
AB=AC

∴△ADB≌△CEA(AAS),
∴AE=BD,AD=CE,
∴DE=AE+AD=BD+CE;
(2)∵∠BDA=∠BAC=α,
∴∠DBA+∠BAD=∠BAD+∠CAE=180°-α,
∴∠CAE=∠ABD,
在△ADB和△CEA中,
∠ABD=∠CAE
∠BDA=∠CEA
AB=AC

∴△ADB≌△CEA(AAS),
∴AE=BD,AD=CE,
∴DE=AE+AD=BD+CE.
(3)①当0≤t<
28
3
时,点P在AB上,点Q在AC上,
此时有BF=2t,CG=3t,AB=22,AC=28.
当PA=QA即22-2t=28-3t,也即t=6时,
∵PF⊥l,QG⊥l,∠BAC=90°,
∴∠PFA=∠QGA=∠BAC=90°.
∴∠PAF=90°-∠GAQ=∠AQG.
在△PFA和△QAG中,
∠PFA=∠QGA
∠PAF=∠AQG
PA=QA

∴PFA与≌QAG(AAS).
②当
28
3
≤t<11时,点P在AB上,点Q也在AB上,
此时相当于两点相遇,则有2t+3t=50,解得t=10;
③当7<t<18时,点Q停在点B处,点P在AC上,
当PA=QA即2t-22=22,解得t=22(舍去).
综上所述:当t等于6或10时,△PFA与△QAG全等.