早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,在四边形ABCD中,AD∥BC,∠B=90°,AD=3,BC=4,点E在AB边上,BE=3,∠CED=90°.(1)求CE的长度;(2)求证:△ADE≌△BEC;(3)设点P是线段AB上的一个动点,求DP+CP的最小值是多少

题目详情
如图,在四边形ABCD中,AD∥BC,∠B=90°,AD=3,BC=4,点E在AB边上,BE=3,∠CED=90°.
(1)求CE的长度;
(2)求证:△ADE≌△BEC;
(3)设点P是线段AB上的一个动点,求DP+CP的最小值是多少?
▼优质解答
答案和解析

考点:
全等三角形的判定与性质 勾股定理 轴对称-最短路线问题
专题:

分析:
(1))由∠B=90°,BC=4,BE=3,根据勾股定理求出CE;(2)先证出∠DEA=∠ECB,即可证明△ADE≌△BEC;(3)作点D关于AB的对称点F,连接CF交AB于点P,再用勾股定理求出CF的长即为DP+CP的最小值.

(1)∵∠B=90°,BC=4,BE=3,根据勾股定理可得:CE=BC2+BE2=42+32=5;(2)∵∠CED=90°,∴∠CEB+∠DEA=90°,∵∠B=90°,∴∠CEB+∠ECB=90°,∴∠DEA=∠ECB,∵AD∥BC,∠B=90°,∴∠A=∠B=90°,在△ADE和△BEC中,DEA=∠ECB ∠A=∠B AD=BE ∴△ADE≌△BEC(AAS);(3)延长DA至F,使得AD=AF,并连接CF,此时CF与AB的交点为点P,连接PD;∵AB⊥AD,且AD=AF,∴△DFP是等腰三角形,∴DP=FP,∴DP+CP的最小值为CF,过点F作FH垂直CB的长线,垂足为H,如图所示:根据题意得:CH=7,FH=7,根据勾股定理可得,CF=72+72=72,即DP+CP的最小值为72.
点评:
本题考查了勾股定理、轴对称以及最短路线问题;熟练掌握勾股定理和最短路线的作图是解决问题的关键.