早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,有下列结论:①∠EBG=45°;②

题目详情
如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,有下列结论:
①∠EBG=45°;            ②△DEF∽△ABG;
③S△ABG=S△FGH;        ④AG+DF=FG.
其中正确的是___.(填写正确结论的序号)
作业帮
▼优质解答
答案和解析
∵根据折叠得出∠BAG=∠FBG,∠CBE=∠FBE,
又∵四边形ABCD是矩形,
∴∠BAC=90°,
∴∠EBG=
1
2
×90°=45°,∴①正确;
∵四边形ABCD是矩形,
∴AB=DC=6,BC=AD=10,∠A=∠C=∠D=90°,
∴根据折叠得∠BFE=∠C=90°,
∴∠ABG+∠BGA=90°,∠EFD+∠BFA=90°,
∵∠BGA>∠BFA,
∴∠BAG≠∠EFD,
∵∠GHB=∠A=90°,∠EFB=∠C=90°,
∴∠GHB=∠EFB,
∴GH∥EF,
∴∠EFD=∠HGF,
根据已知不能推出∠AGB=∠HGF,
∴∠AGB≠∠EFD,
即△DEF和△ABG不全等,∴②错误;
∵根据折叠得:AB=BH=6,BC=BF=10,
∴由勾股定理得:AF=
102-62
=8,
∴DF=10-8=2,HF=10-6=4,
设AG=HG=x,
在Rt△FGH中,由勾股定理得:GH2+HF2=GF2
即x2+42=(8-x)2
解得:x=3,
即AG=HG=3,
∴S△ABG=
1
2
×AB×AG=
1
2
×6×3=9,S△FHG=
1
2
×GH×HF=
1
2
×3×4=6,∴③错误;
∵AG+DF=3+2=5,GF=10-3-2=5,∴④正确;
故答案为:①④.