早教吧作业答案频道 -->数学-->
例如根号13、根号123、根号1500√1500怎么开√6怎么开
题目详情
例如 根号13、 根号123 、 根号1500
√1500 怎么开 √6 怎么开
√1500 怎么开 √6 怎么开
▼优质解答
答案和解析
简单方法是 背下一百以内的质数的开放
然后将要开的数 分解因式 例如 根号13=根号十三
根号123=根号4*31=2倍根号31
根号1500= 根号100*15=10倍根号15.=10倍根号5乘根号3.
繁琐方法:
转帖
先一起来研究一下,怎样求 ,这里1156是四位数,所以它的算术平方根的整数部分是两位数,且易观察出其中的十位数是3.于是问题的关键在于;怎样求出它的个位数a?为此,我们从a所满足的关系式来进行分析. 根据两数和的平方公式,可以得到 1156=(30+a)2=302+2×30a+a2,所以 1156-302=2×30a+a2,即 256=(3×20+a)a,这就是说,a是这样一个正整数,它与 3×20的和,再乘以它本身,等于256. 为便于求得a,可用下面的竖式来进行计算:根号上面的数3是平方根的十位数.将 256试除以20×3,得4.由于4与20×3的和64,与4的积等于256,4就是所求的个位数a.竖式中的余数是0,表示开方正好开尽.于是得到 1156=342,或 上述求平方根的方法,称为笔算开平方法,用这个方法可以求出任何正数的算术平方根,它的计算步骤如下:1.将被开方数的整数部分从个位起向左每隔两位划为一段,用撇号分开(竖式中的11’56),分成几段,表示所求平方根是几位数; 2.根据左边第一段里的数,求得平方根的最高位上的数(竖式中的3); 3.从第一段的数减去最高位上数的平方,在它们的差的右边写上第二段数组成第一个余数(竖式中的256); 4.把求得的最高位数乘以20去试除第一个余数,所得的最大整数作为试商(3×20除256,所得的最大整数是 4,即试商是4); 5.用商的最高位数的20倍加上这个试商再乘以试商.如果所得的积小于或等于余数,试商就是平方根的第二位数;如果所得的积大于余数,就把试商减小再试(竖式中(20×3+4)×4=256,说明试商4就是平方根的第二位数); 6.用同样的方法,继续求平方根的其他各位上的数. 按照上面步骤求 ,可得到下面左边的竖式:于是得到 如遇开不尽的情况,可根据所要求的精确度求出它的近似值.例如求 的近似值(精确到0.01),可列出上面右边的竖式,并根据这个竖式得到 笔算开平方运算较繁,在实际中直接应用较少,但用这个方法可求出一个数的平方根的具有任意精确度的近似值. 我国古代数学的成就灿烂辉煌,早在公元前一世纪问世的我国经典数学著作《九章算术》里,就在世界数学史上第一次介绍了上述笔算开平方法.据史料记载,国外直到公元五世纪才有对于开平方法的介绍.这表明,古代对于开方的研究我国在世界上是遥遥领先的.
然后将要开的数 分解因式 例如 根号13=根号十三
根号123=根号4*31=2倍根号31
根号1500= 根号100*15=10倍根号15.=10倍根号5乘根号3.
繁琐方法:
转帖
先一起来研究一下,怎样求 ,这里1156是四位数,所以它的算术平方根的整数部分是两位数,且易观察出其中的十位数是3.于是问题的关键在于;怎样求出它的个位数a?为此,我们从a所满足的关系式来进行分析. 根据两数和的平方公式,可以得到 1156=(30+a)2=302+2×30a+a2,所以 1156-302=2×30a+a2,即 256=(3×20+a)a,这就是说,a是这样一个正整数,它与 3×20的和,再乘以它本身,等于256. 为便于求得a,可用下面的竖式来进行计算:根号上面的数3是平方根的十位数.将 256试除以20×3,得4.由于4与20×3的和64,与4的积等于256,4就是所求的个位数a.竖式中的余数是0,表示开方正好开尽.于是得到 1156=342,或 上述求平方根的方法,称为笔算开平方法,用这个方法可以求出任何正数的算术平方根,它的计算步骤如下:1.将被开方数的整数部分从个位起向左每隔两位划为一段,用撇号分开(竖式中的11’56),分成几段,表示所求平方根是几位数; 2.根据左边第一段里的数,求得平方根的最高位上的数(竖式中的3); 3.从第一段的数减去最高位上数的平方,在它们的差的右边写上第二段数组成第一个余数(竖式中的256); 4.把求得的最高位数乘以20去试除第一个余数,所得的最大整数作为试商(3×20除256,所得的最大整数是 4,即试商是4); 5.用商的最高位数的20倍加上这个试商再乘以试商.如果所得的积小于或等于余数,试商就是平方根的第二位数;如果所得的积大于余数,就把试商减小再试(竖式中(20×3+4)×4=256,说明试商4就是平方根的第二位数); 6.用同样的方法,继续求平方根的其他各位上的数. 按照上面步骤求 ,可得到下面左边的竖式:于是得到 如遇开不尽的情况,可根据所要求的精确度求出它的近似值.例如求 的近似值(精确到0.01),可列出上面右边的竖式,并根据这个竖式得到 笔算开平方运算较繁,在实际中直接应用较少,但用这个方法可求出一个数的平方根的具有任意精确度的近似值. 我国古代数学的成就灿烂辉煌,早在公元前一世纪问世的我国经典数学著作《九章算术》里,就在世界数学史上第一次介绍了上述笔算开平方法.据史料记载,国外直到公元五世纪才有对于开平方法的介绍.这表明,古代对于开方的研究我国在世界上是遥遥领先的.
看了 例如根号13、根号123、根...的网友还看了以下:
如果f(x)=kx,f(3)=-6,那么k=?3=-6xx=-½正确该怎样做?) 2020-04-26 …
22.7-1.8+17.3 99×3.9+3.9 1/4÷122.7-1.8+17.3 99×3. 2020-05-13 …
解方程3x-7 x+17 x 2x-3 5x+102 - —— = —— —— - —— =1+ 2020-05-16 …
如果:甲×乙=2分之3乙×丙=5分之4丙×4分之3=6那么:甲=()乙=()丙()作业本上是三角形 2020-06-05 …
前天和前一天的区别、前一天和前天的区别?前两天呢?例如今天是7号、那么前天是5号对不?前一天呢?6 2020-06-14 …
算法:求N!的二进制表示中最低位1的位置,这里的位置是指什么位置书上道:N=3,=6,那么N!的二 2020-07-04 …
f(3)=4,g(3)=2,f`(3)=-5,g`(3)=6那么(f+g)`(3)=?(fg)`( 2020-07-09 …
1.小明计算一道乘法时,把因数4.5砍看成5.4结果积比原数大1.8,正确的积是?2.a.b.c. 2020-07-11 …
3减负3=6,那么3减负2答案是什么呢?是一个什么概念? 2020-07-30 …
对于x,y,定义新运算:x&y=ax+by-3(其中a,b是常数).已知1&2=9,(-3)&3=6 2020-11-20 …