早教吧 育儿知识 作业答案 考试题库 百科 知识分享

设S1=1+112+122,S2=1+122+132,S3=1+132+142,…,Sn=1+1n2+1(n+1)2,设S=S1+S2+…+Sn.(1)设Tn=S,求Tn(用含n的代数式表示)(2)求使Tn≥2011的最小正整数值.

题目详情
S1=1+
1
12
+
1
22
S2=1+
1
22
+
1
32
S3=1+
1
32
+
1
42
,…,Sn=1+
1
n2
+
1
(n+1)2
,设S=
S1
+
S2
+…+
Sn

(1)设Tn=S,求Tn(用含n的代数式表示)
(2)求使Tn≥2011的最小正整数值.
▼优质解答
答案和解析
(1)∵Sn=1+
1
n2
+
1
(n+1)2

=
n4+2n3+3n2+2n+1
n2•(n+1)2

=
[n(n+1)+1]2
n2•(n+1)2

Sn
[n(n+1)+1]2
n2•(n+1)2
=
n(n+1)+1
n(n+1)
=1+
1
n
1
n+1

所以
S1
=1+1−
1
2

S2
=1+
1
2
1
3

S3
=1+
1
3
1
4


Sn
=1+
1
n
1
n+1

S=
S1
+
S2
+…+
Sn

=1+1-
1
2
+1+
1
2
1
3
+1+
1
3
1
4
+…+1+
1
n
1
n+1

=n+[(1-
1
2
)+(
1
2
-
1
3
)+…+(
1
n
-
1
n+1
)]=n+1-
1
n+1

∵Tn=S,∴Tn=n+1-
1
n+1

(2)∵Tn=n+1-
1
n+1
≥2011
(n+1)2−1
n+1
=
n2+2n
n+1
≥2011,
∵n∈N*,∴n2+2n≥2011n+2011,
即n2-2009n-2011≥0,
解得n≥
2009+
4028077
2
,或n≤
2009−
4028077
2

∵n∈N*,∴n的最小值是2008.