早教吧 育儿知识 作业答案 考试题库 百科 知识分享

阅读下列材料,然后解答问题.学会从不同的角度思考问题学完平方差公式后,小军展示了以下例题:例求(2+1)(22+1)(24+1)(28+1)(

题目详情
阅读下列材料,然后解答问题.
                                                                 学会从不同的角度思考问题
学完平方差公式后,小军展示了以下例题:
例  求(2+1)(22+1)(24+1)(28+1)(216+1)+1值的末尾数字.
原式=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)+1
=(22-1)(22+1)(24+1)(28+1)(216+1)+1
=(24-1)(24+1)(28+1)(216+1)+1
=(28-1)(28+1)(216+1)+1
=(216-1)(216+1)+1
=232
由2n(n为正整数)的末尾数的规律,可得232末尾数数字是6.
爱动脑筋的小明,想出了一种新的解法:因为22+1=5,而2+1,24+1,28+1,216+1均为奇数,几个奇数与5相乘,末尾数字是5,这样原式的末尾数字是6.
在数学学习中,要向小明那样,学会观察,独立思考,尝试从不同角度分析问题,这样才能学会数学.
请解答下列问题:
(1)计算:(2+1)(22+1)(23+1)(24+1)(25+1)…(2n+1)+1(n为正整数)的值的末尾数字是___;
(2)计算:2(3+1)(32+1)(34+1)(38+1)(316+1)+1值的末尾数字是___;
(3)计算:2(3+1)(32+1)(34+1)(38+1)+1.
▼优质解答
答案和解析
(1)由题意可知:原式=(2-1)(2+1)(22+1)(23+1)(24+1)(25+1)…(2n+1)+1
=22n
当n为奇数时,尾数为4,
当n为偶数时,尾数为6,
(2)原式=(3-1)(3+1)(32+1)(34+1)(38+1)(316+1)+1
=(32-1)(32+1)(34+1)(38+1)(316+1)+1
=(34-1)(34+1)(38+1)(316+1)+1
=(38-1)(38+1)(316+1)+1
=(316-1)(316+1)+1
=332
故尾数为1,
(3)原式=(3-1)(3+1)(32+1)(34+1)(38+1)(316+1)+1
=(32-1)(32+1)(34+1)(38+1)(316+1)+1
=(34-1)(34+1)(38+1)(316+1)+1
=(38-1)(38+1)(316+1)+1
=(316-1)(316+1)+1
=332
故答案为:(1)4或6;(2)1;