早教吧 育儿知识 作业答案 考试题库 百科 知识分享

若把能表示为两个连续偶数的平方差的正整数称为“和平数”,则在1~100这100个数中,能称为“和平数”的所有数的和是()A.130B.325C.676D.1300

题目详情
若把能表示为两个连续偶数的平方差的正整数称为“和平数”,则在1~100这100个数中,能称为“和平数”的所有数的和是
(  )
A. 130
B. 325
C. 676
D. 1300
▼优质解答
答案和解析
设两个连续偶数为2k+2和2k,则(2k+2)2-(2k)2=4(2k+1),
故和平数的特征是4的奇数倍,
故在1~100之间,能称为和平数的有4×1、4×3、…、4×25,共计13个,
其和为
1+25
2
×13=676;
故选C.