早教吧作业答案频道 -->数学-->
圆内接四边形对角线互相垂直,求证:(1)一组对边的平方和等于另一组对边的平方和(2)两条对角线之积等于两组对边之积的和;(3)经过对角线交点作其中一边的垂线,一定平分这一条边的对边.
题目详情
圆内接四边形对角线互相垂直,求证:(1)一组对边的平方和等于另一组对边的平方和
(2)两条对角线之积等于两组对边之积的和;(3)经过对角线交点作其中一边的垂线,一定平分这一条边的对边.
(2)两条对角线之积等于两组对边之积的和;(3)经过对角线交点作其中一边的垂线,一定平分这一条边的对边.
▼优质解答
答案和解析
如图
(1)一组对边的平方和等于另一组对边的平方和
AB²=AM²+BM²,
CD²=CM²+DM²,
∴AB²+CD²=AM²+BM²+CM²+DM²,
同理BC²+DA²=AM²+BM²+CM²+DM²,
∴AB²+CD²=BC²+DA².
⑵经过对角线交点作其中一边的垂线,一定平分这一条边的对边.
提示;
由∠DCA=∠DBA=∠AMF=∠CME,
故EM=EC,
同理EM=ED,
因此EC=ED,
即E为CD的中点;
⑶两条对角线之积等于两组对边之积的和
在AC上取一点N,使∠NDA=∠CDB,
又∠DAC=∠DBC,
∴⊿NDA∽⊿CDB,
AD/AN=BD/BC,
∴AD·BC=AN·BD;……………………①
由⊿NDA∽⊿CDB,
得DA/DB=DN/DC
又由∠NDA=∠CDB,
得∠BDA=∠CDN,
∴⊿DAB∽⊿DNC,
∴AB/NC=BD/CD,
∴AB·CD=NC·BD,……………………②
由①+②得
AD·BC+AB·CD=﹙AN+NC﹚BD=AC·BD,
即AC·BD=AD·BC+AB·CD.
(1)一组对边的平方和等于另一组对边的平方和
AB²=AM²+BM²,
CD²=CM²+DM²,
∴AB²+CD²=AM²+BM²+CM²+DM²,
同理BC²+DA²=AM²+BM²+CM²+DM²,
∴AB²+CD²=BC²+DA².
⑵经过对角线交点作其中一边的垂线,一定平分这一条边的对边.
提示;
由∠DCA=∠DBA=∠AMF=∠CME,
故EM=EC,
同理EM=ED,
因此EC=ED,
即E为CD的中点;
⑶两条对角线之积等于两组对边之积的和
在AC上取一点N,使∠NDA=∠CDB,
又∠DAC=∠DBC,
∴⊿NDA∽⊿CDB,
AD/AN=BD/BC,
∴AD·BC=AN·BD;……………………①
由⊿NDA∽⊿CDB,
得DA/DB=DN/DC
又由∠NDA=∠CDB,
得∠BDA=∠CDN,
∴⊿DAB∽⊿DNC,
∴AB/NC=BD/CD,
∴AB·CD=NC·BD,……………………②
由①+②得
AD·BC+AB·CD=﹙AN+NC﹚BD=AC·BD,
即AC·BD=AD·BC+AB·CD.
看了 圆内接四边形对角线互相垂直,...的网友还看了以下:
过四边形的各个顶点分别作对角线的平行线,如果这四条平行线所围成的的四边形是菱形,那原四边形一定是?A 2020-03-30 …
四冲程内燃机在一个工作循环中,曲轴转动周,燃气对活塞做功次.在内燃机工作的四个冲程中,只有冲程对外 2020-05-13 …
法律逻辑学A;作案人或是甲,或是乙、B:如果丙不是作案人,丁也不是作案人C:甲是作案人,只有一人是 2020-05-16 …
2010年6月份英语六级估分!作文写的一般,听力选择大概对一半左右,听短文那个能对三四个吧也就,阅 2020-05-20 …
四边形一条对角线所在直线上的点,如果到这条对角线的两端点的距离不相等,但到另一对角线的两个端点的距 2020-07-30 …
宇宙中存在由质量相等的四颗星组成的四星系统.四星系统离其他恒星较远,通常可忽略其他星体对四星系统的作 2020-11-03 …
宇宙中存在由质量相等的四颗星组成的四星系统,四星系统离其他恒星较远,通常可忽略其他星体对四星系统的引 2020-11-03 …
宇宙中存在由质量相等的四颗星组成的四星系统,四星系统离其他恒星较远,通常可忽略其他星体对四星系统的引 2020-11-03 …
宇宙中存在由质量相等的四颗星组成的四星系统,四星系统离其他恒星较远,通常可忽略其他星体对四星系统的引 2020-11-03 …
一次考试有五道题。考试结果统计:做对第一题的占全部考试人数的80%,做对第二题的站全部考试人数的95 2020-11-06 …