早教吧 育儿知识 作业答案 考试题库 百科 知识分享

若函数y=12(x2−100x+196+|x2−100x+196|),则当自变量x取1,2,3,…,100这100个自然数时,函数值的和是()A.540B.390C.194D.197

题目详情
若函数y=
1
2
(x2−100x+196+|x2−100x+196|),则当自变量x取1,2,3,…,100这100个自然数时,函数值的和是(  )

A.540
B.390
C.194
D.197
▼优质解答
答案和解析
∵x2-100x+196=(x-2)(x-98)
∴当2≤x≤98时,|x2-100x+196|=-(x2-100x+196),
当自变量x取2到98时函数值为0,
而当x取1,99,100时,|x2-100x+196|=x2-100x+196,
所以,所求和为(1-2)(1-98)+(99-2)(99-98)+(100-2)(100-98)=97+97+196=390.
故选B.