早教吧作业答案频道 -->数学-->
设S1=1+(1/1²)+(1/2²),S2=1+(1/3²)+(1/4²),Sn=1+(1/n²)+1/(n+1)²,设S=根号s1+根号s2+...+根号sn,则s=?
题目详情
设S1=1+(1/1²)+(1/2²),S2=1+(1/3²)+(1/4²),Sn=1+(1/n²
)+【1/(n+1)²】,设S=根号s1+根号s2+...+根号sn,则s=?
)+【1/(n+1)²】,设S=根号s1+根号s2+...+根号sn,则s=?
▼优质解答
答案和解析
√S1=1+1/(1×2) √S2=1+1/(2×3) ….√Sn=1+1/(n×(n+1))
S=(1+1+…..+1)+1/(1×2)+1/(2×3)+…+1/(n×(n+1))=n+[1-1/(n+1)]
= n+n/(n+1)
S=(1+1+…..+1)+1/(1×2)+1/(2×3)+…+1/(n×(n+1))=n+[1-1/(n+1)]
= n+n/(n+1)
看了 设S1=1+(1/1²)+(...的网友还看了以下: