早教吧作业答案频道 -->数学-->
=1×2×3×4×5×……×n[x/1!]+[x/2!]+[x/3!]+[x/4!]+……+[x/2006!]=226求x?(其中“/”为分号)最好有过程.
题目详情
=1×2×3×4×5×……×n
[x/1!]+[x/2!]+[x/3!]+[x/4!]+……+[x/2006!]=226
求x?
(其中“/”为分号)
最好有过程.
[x/1!]+[x/2!]+[x/3!]+[x/4!]+……+[x/2006!]=226
求x?
(其中“/”为分号)
最好有过程.
▼优质解答
答案和解析
1/(1*2*3*4)+1/(2*3*4*5)+.+1/[n*(n+1)*(n+2)*(n+3)]
=1/3{1/(1*2*3)-1/(2*3*4)+1/(2*3*4)-1/(3*4*5)+.+1/[n*(n+1)*(n+2)]-1/[(n+1)*(n+2)*(n+3)]}
=1/3{1/6-1/[(n+1)*(n+2)*(n+3)]}
=1/3*6-1/[3(n+1)*(n+2)*(n+3)]
1/18-1/[3(n+1)*(n+2)*(n+3)]
=1/3{1/(1*2*3)-1/(2*3*4)+1/(2*3*4)-1/(3*4*5)+.+1/[n*(n+1)*(n+2)]-1/[(n+1)*(n+2)*(n+3)]}
=1/3{1/6-1/[(n+1)*(n+2)*(n+3)]}
=1/3*6-1/[3(n+1)*(n+2)*(n+3)]
1/18-1/[3(n+1)*(n+2)*(n+3)]
看了 =1×2×3×4×5×……×...的网友还看了以下:
四项因式分解的题.a^2-ab+ac-bc,x^2+ax^2+x+ax-1-a,ac^2+bd^2 2020-05-13 …
20.x^2/a^2+y^2/b^2+z^2/c^2=1成立;20.x^2/a^2+y^2/b^2 2020-06-11 …
求1+2+2^2+2^3+2^4+…+2^2014的值.设S=1+2+2^2+2^3+2^4+…+ 2020-07-09 …
为了求1+2+2^2+2^3+…+2^1000的值,可令S=1+2+2^2+2^3+2^1000, 2020-07-22 …
xyz=1,x+y+z=2,x^2+y^2+z^2=3,求x,y,z我解:xy=1/z,x+y=2- 2020-10-31 …
(1).-3ma^3+6ma^-12ma(2).x^6n+2+2x^3n+2+x^2(3).5(x- 2020-10-31 …
一些因式分解的题~(1)(x^2+y^2)^2-(z^2-x^2)^2-(y^2+z^2)^2(2) 2020-11-01 …
观察下列各式然后回答问题:1-1/2^2=1/2*2/3,1-1/3^2+2/3*4/3,1-1/4 2020-11-01 …
已知a,b属于正实数a^2+b^2/2=1求y=a√(1+b^2)的最大值参考书上是用y^2=[a√ 2020-12-31 …
这些题怎么数学解1已知(x+m)^2(x^2-2x+3)+x(x+1)中不含x^2项求m的值2已知a 2020-12-31 …