早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知函数f(x)是定义在(-∞,0)∪(0,+∞)上的奇函数,当x>0时,f(x)=log2x.(Ⅰ)求当x<0时,函数f(x)的表达式;(Ⅱ)求满足f(x+1)<-1的x的取值范围;(Ⅲ)已知对于任意

题目详情
已知函数f(x)是定义在(-∞,0)∪(0,+∞)上的奇函数,当x>0时,f(x)=log2x.
(Ⅰ)求当x<0时,函数f(x)的表达式;
(Ⅱ)求满足f(x+1)<-1的x的取值范围;
(Ⅲ)已知对于任意的k∈N,不等式2k≥k+1恒成立,求证:函数f(x)的图象与直线y=x没有交点.
▼优质解答
答案和解析
(Ⅰ)当x<0时,则有-x>0,故f(-x)=log2(-x)=-f(x),由此求得函数f(x)的解析式.
(Ⅱ)由于 ,可得,由f(x+1)<-1,可得,或
由此解得x的范围.
(Ⅲ)根据对称性,只要证明函数f(x)的图象与直线y=x在x∈(0,+∞)上无交点即可.令x∈(0,+∞),函数y1=log2x,y2=x,分①当x∈(0,1]时,②当x∈(2k,2k+1](k∈N)时这2种情况,分别求得y1<y2,可得在x∈(0,+∞)上直线y=x始终在y=log2x的图象之上方,命题得证.
【解析】
(Ⅰ)当x<0时,则有-x>0,故f(-x)=log2(-x)=-f(x),∴f(x)=-log2(-x).------(5分)
(Ⅱ)由于

因为f(x+1)<-1,∴,或
解得x<-3,或.----(10分)
(Ⅲ)根据对称性,只要证明函数f(x)的图象与直线y=x在x∈(0,+∞)上无交点即可.
令x∈(0,+∞),函数y1=log2x,y2=x,
①当x∈(0,1]时,y1≤0,y2>0,则y1<y2
②当
则在x∈(0,+∞)上直线y=x始终在y=log2x的图象之上方.
综上所述,由于对称性可知,函数f(x)的图象与直线y=x没有交点.---------(15分)