早教吧作业答案频道 -->数学-->
1.1/2+(1/3+2/3)+(1/4+2/4+3/4+4/4)+(1/5+2/5+3/5+4/5+5/5)+……+(1/60+2/60+3/60+……+59/60)2.1/8*9+1/9*10+1/10*11+……+1/99*100
题目详情
1.1/2+(1/3+2/3)+(1/4+2/4+3/4+4/4)+(1/5+2/5+3/5+4/5+5/5)+……+(1/60+2/60+3/60+……+59/60)
2.1/8*9+1/9*10+1/10*11+……+1/99*100
2.1/8*9+1/9*10+1/10*11+……+1/99*100
▼优质解答
答案和解析
1.
=1/2+1+[1/2×(4+1)] + [1/2×(5+1)] + …… + [1/2×(60+1)]
=1/2+1+ 1/2×(5+6+……+61)
=1/2+1+ 1/2×(1+2+……+61) - 1/2×(1+2+3+4)
=1/2+1+ 1/2×1891 - 1/2×10
=1/2×(1+2+1891-10)
=942
上面用到了1+2+3+……+n = n(n+1)/2这个公式
2.
=(1/8-1/9)+(1/9-1/10)+……+(1/99-1/100)
=1/8-1/100
=23/200
提示 1/n*(n+1) = 1/n - 1/(n+1)
=1/2+1+[1/2×(4+1)] + [1/2×(5+1)] + …… + [1/2×(60+1)]
=1/2+1+ 1/2×(5+6+……+61)
=1/2+1+ 1/2×(1+2+……+61) - 1/2×(1+2+3+4)
=1/2+1+ 1/2×1891 - 1/2×10
=1/2×(1+2+1891-10)
=942
上面用到了1+2+3+……+n = n(n+1)/2这个公式
2.
=(1/8-1/9)+(1/9-1/10)+……+(1/99-1/100)
=1/8-1/100
=23/200
提示 1/n*(n+1) = 1/n - 1/(n+1)
看了 1.1/2+(1/3+2/3...的网友还看了以下: