早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(附加题)如图,在一块三角形区域土地ABC中,∠C=90°,AC=8,BC=6,底边AB上的高h=245,现在要在△ABC内建造一个面积为12的矩形水池DEFG,如图的设计方案是使DE在AB边上,点G在AC边上,点F在BC

题目详情
(附加题)如图,在一块三角形区域土地ABC中,∠C=90°,AC=8,BC=6,底边AB上的高h=
24
5
,现在要在△ABC内建造一个面积为12的矩形水池DEFG,如图的设计方案是使DE在AB边上,点G在AC边上,点F在BC边上.

(1)求此方案中水池宽DG;
(2)实际施工时(修建前),发现在AB边上距B点l.85的M处有一棵古老的大树,而这棵大树却又在矩形水池边DE上.为了保护这棵古树,请你另外设计一种方案,使三角形区域中也能修建一个面积为12的矩形水池,并且还能避开大树.(若总分超过100分,则此题超出分数不计入总分)
▼优质解答
答案和解析
如图,(1)过点C作CI⊥AB,交GF于H,
∵AC=8,BC=6,
在△ABC中用勾股定理得:AB=10,
∵水池是矩形面积为12,h=
24
5
=4.8,设IH=x,
∴GF=
12
x

∵GF∥AB,
∴△CGF∽△CAB,
∵CH,CI分别是△CGF和△CAB对应边上的高,
CH
CI
=
GF
AB

4.8−x
4.8
=
12
x
10

解得:x=2.4,
∴DG=2.4;
(2)∵FE⊥AB,CI⊥AB,
∴FE∥CI,
∴△BFE∽△BCI,
∴FE:CI=BE:BI,
又∵FE=2.4,CI=4.8,
在Rt△BCI中用勾股定理可得BI=3.6,
∴BE=
FE•BI
CI
=
2.4×3.6
4.8
=1.8,
∵BE=1.8<1.85,
∴这棵大树在最大水池的边上.
取AB,BC,AC的中点,和C顺次相连得到的矩形DGCF即可.
设计方案如图: