早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知数列{an}的前n项和Sn=3n2+8n,{bn}是等差数列,且an=bn+bn+1(Ⅰ)求数列{bn}的通项公式;(Ⅱ)令cn=(an+1)n+13(bn+2)n,求数列{cn}的前n项和Tn.

题目详情
已知数列{an} 的前n项和Sn=3n2+8n,{bn}是等差数列,且an=bn+bn+1
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)令cn=
(an+1)n+1
3(bn+2)n
,求数列{cn}的前n项和Tn
▼优质解答
答案和解析
(Ⅰ)∵数列{an}的前n项和Sn=3n2+8n,
∴a1=11.
当n≥2时,an=Sn-Sn-1=3n2+8n-3(n-1)2-8(n-1)=6n+5.
又∵an=6n+5对n=1也成立所以an=6n+5,{bn}是等差数列,设公差为d,则an=bn+bn+1=2bn+d.
当n=1时,2b1=11-d;当n=2时,2b2=17-d
2b1=11-d
2b2=17-d

解得d=3,
所以数列{bn}的通项公式为bn=
an-d
2
=3n+1;
(Ⅱ)由cn=
(an+1)n+1
3(bn+2)n
=
(6n+6)n+1
3(3n+3)n
=(n+1)•2n+1,
于是,Tn=2•22+3•23+4•24+…+(n+1)•2n+1,
两边同乘以2,得2Tn=2•23+3•24+…+n•2n+1+(n+1)•2n+2.
两式相减,得-Tn=8-(n+1)•2n+2+(23+24+…+2n+1)=8-(n+1)•2n+2+
8(1-2n-1)
1-2
=-n•2n+2
所以,Tn=n•2n+2.