早教吧 育儿知识 作业答案 考试题库 百科 知识分享

若△ABC的三边a、b、c满足a2+b2+c2+338=10a+24b+26c,则△ABC的面积是()A.338B.24C.26D.30

题目详情
若△ABC的三边a、b、c满足a2+b2+c2+338=10a+24b+26c,则△ABC的面积是(  )
A. 338
B. 24
C. 26
D. 30
▼优质解答
答案和解析
由a2+b2+c2+338=10a+24b+26c,
得:(a2-10a+25)+(b2-24b+144)+(c2-26c+169)=0,
即:(a-5)2+(b-12)2+(c-13)2=0,
a-5=0,b-12=0,c-13=0
解得a=5,b=12,c=13,
∵52+122=169=132,即a2+b2=c2
∴∠C=90°,
即三角形ABC为直角三角形.
S△ABC=
1
2
×5×12=30.
故选:D.